可见满足方程(10)。为使电路总谐波失真小,CB应该用等效串联电阻ESR小的瓷片电容或钽电容。
8.单端工作状态
在单端(SE)工作状态下(见图9),负载由VO+驱载。在单端模式下,增益由等式(11)的RF,R1决定。
(11)
在SE模式下,输出耦合电容的选择也很重要,CC对电路其它元件的取值也有影响。它应满足以下公式(12)。
(12)
9.输出耦合电容CC:
在典型的单电源单端(SE)情况下,CC用来在电路输出端与负载间隔直,电路的高通频率由等式(13)决定。
(13)
电容CC的缺点是影响电路频响的下限值,从而影响电路的低频响应。为使下限频率足够低,CC取值应足够大。一般对4Ω,8Ω,32Ω,47Ω的负载,CC应选用330μF以上。表3给出了不同的取值情况下,电路的频响特性。
表3 单端输入时负载阻抗与电路低频特性间的关系
RL | CC | 最低频率响应 |
8 | 330μF | 60Hz |
32 | 330μF | 15Hz |
47000Ω | 330μF | 0.01Hz |
如表3所示,8Ω负载比较合适,耳机频响特性也很好。
10.SE/BTL工作模式:
TPA711可以很方便地在SE和BTL工作模式下实现转换,这是它最重要的特性,这对电路负载既有扬声器又有耳机的场合下特别有用。当控制端SE/BTL为L时,电路工作于BTL模式,当SE/BTL为H时,电路工作于SE模式。SE/BTL的控制输入可以是一个TTL逻辑电源,更常用的是采用图9所示的电阻分压网络。
图9 TPA711电阻分压网络电路
当耳机未插入时,耳机开关闭合,由100 kΩ电阻分压网络提供一个低电平SE/BTL端子,当耳机插入时,电阻1 kΩ切断,分压网络为SE/BTL端子提供一个高电平,从而完成SE/BTL工作模式转换。
11.采用低等效串联电阻电容:
本电路所有电容都应采用低等效串联电阻的电容,这对提高电路性能很有意义。
12.5V和3.3V工作:
TPA711可以在3.3V~5V范围内正常工作。提供电压不同,输出功率不同。每个TPA711的动态范围为(VDD-1)伏,而对3.3V工作电压下,当VO(PP)=2.3V时,电路出现限幅,对5V供电,VO(PP)=4V时,电路出现限幅。
13.动态范围和热设计:
在正常工作状态下,线性放大器会产生很大的功耗,对典型的CD需要12dB~15dB的动态范围。对TPA711在5V供电电压,负载为8Ω的情况下,它可以输出700mW的峰值功率。现将功率值转变为dB值。有:PdB=101gPw=101g700mW=-1.5dB
可得到无失真条件下的电路动态范围
-1.5dB-15dB=-16.5(15dB的动态范围)
-1.5dB-12dB=-13.5(12dB的动态范围)
-1.5dB-9dB=-10.5(9dB的动态范围)
-1.5dB-6dB=-7.5(6dB的动态范围)
-1.5dB-3dB=-4.5(3dB的动态范围)
再次将分贝值转换为功率值:
Pw=10PDB/10
=22mW(15dB动态范围)
=44mW(12dB动态范围)
=88mW(9dB动态范围)
=175mW(6dB动态范围)
=350mW(3dB动态范围)
表4给出了TPA711在额定功率5V,8Ω,BTL模式下的峰值输出功率,平均输出功率,功耗,最高环境温度间的关系。
表4表明,TPA711可以在DGN封装条件下不使用散热片,在环境温度高达110℃时输出700Mw。D封装下环境温度34℃,不使用散热片,输出功率700Mw。
表 4
峰值输出功率(mW) | 平均输出功率 | 功耗(mW) | D封装(SOIC) | DGW封装(MSOP) |
最高环境温度 | 最高环境温度 | |||
700 | 700Mw | 675 | 34℃ | 110℃ |
700 | 350mW(3Db) | 595 | 47℃ | 115℃ |
700 | 176mW(6dB) | 475 | 68℃ | 122℃ |
700 | 88mW(9dB) | 350 | 89℃ | 125℃ |
700 | 44mW(12dB) | 225 | 111℃ | 125℃ |