·上一文章:阶高密度双极性信号编译码的建模与仿真
·下一文章:基于Web和硬件可重构技术的远程抄表设计
高斯白噪声信号是一个随机过程,每个样值点都是一个高斯变量,其双边功率谱密度为常数 N0 / 2 ,即:
由 (2) 式可见,高斯白噪声在任意两个不同时刻的采样信号是统计独立的。但是,从 m 序列的产生过程可见,每个时钟周期中,线性反馈移位寄存器只移出一个最高位,并反馈一个值给最低位,所以,相邻的几个状态之间不是完全独立的。这必然影响高斯白噪声任意两个不同时刻采样信号之间的独立性。所以要进行非相关性操作。为了减小相关性,通常的方法是产生高斯序列后再接一个交织器,把高斯序列出现的前后顺序打乱。但建交织器要占用 FPGA 的硬件资源,所以,本设计不采用交织器。
考虑到 m 序列的周期为 (2n-1) ,第 2n 个值往后都是不断重复第 1 个到第 (2n-1) 个状态。所以只要线性反馈移位寄存器每隔 r 个同步时钟 ( 其中 r=2i , i 为整数 ) 输出一个状态值 ( 即线性反馈移位寄存器每变换 r 个状态输出一次状态值 ) ,就能在不改变 m 序列原有周期的情况下减小相关性,且不增加硬件资源的消耗。但要注意: r 一定要是 2 的幂,这样才能保证 m 序列的周期不变。
2 均匀分布向高斯分布的转换
2.1 均匀分布和高斯分布之间的映射关系
设 X 服从 [1 , 218-1] 区间内的均匀分布; Y 服从均值为 0 、方差为 1 的标准正态分布,那么,考虑到高斯分布的实际情况, Y 仅在 [-4 , 4] 之间取值即可。 Y 的概率密度函数为:
2.2 折线逼近法