数据记录/通信接口则管理 Flash/EEPROM以及通信端口的使用。音频/警报输出功能只要通过几个模块和控制器就能实现,发出状态警报。
信号调节/传感器控制模块与透析仪及导管等系统机械部件紧密集成,共同控制各种抗凝剂的给药;利用比较器、通用高精度运放以及ADC来控制和感测温度;控制透析液的混合和流动,及其它临床治疗功能。
泵/电机控制及驱动器电路管理设备中众多的泵、阀、电机和加热器,动脉和静脉控制功能则监控电平和压力传感器。有趣的是,尽管泵/电机控制和动脉/静脉控制监控器是血液透析仪所独有的,图1中其它控制器中不少是大多数临床医疗设备常用的。
各种功能与混合信号FPGA的集成
今天的单芯片闪存混合信号FPGA带有集成式模拟功能、Flash、FPGA构架,常常还有嵌入式行业标准微处理器。因此,它们能够执行临床医疗设备的系统管理、功率管理和热管理,以及控制功能 ― 从系统上电/断电功能及数据记录到温度和电压感测。
有了混合信号FPGA,系统板上的许多元件都变得多余而得以去除,包括Flash、PWM、分立式模拟IC、时钟源和实时时钟。由于基于Flash的FPGA把它们的配置信息存储在片上Flash单元中,故无需象基于SRAM的FPGA那样在系统上电时加载外部配置数据。因此,每次系统上电时,这些Flash混合信号FPGA不需要EEPROM或微控制器这样的单独系统配置元件来加载器件配置数据。这就降低了系统成本和板卡空间要求,同时提高了医疗设备的安全性和系统可靠性。
此外,这些高度集成的器件让设计人员能够把原本由数个分立元件所提供的功能完全整合在单个高度可靠的混合信号FPGA中。图1中的功能性模块 (见图1中的灰色区域) 就是典型血液透析仪中这种集成度的体现。
例如,可能包含看门狗部件、风扇驱动器和温度传感器的功率控制模块就可以由单个混合信号FPGA器件所代替。混合信号FPGA还能够提供原本由电机/泵驱动器模块提供的全部功能,包括微处理器和ADC。
透析仪中的用户接口通常包含有键盘、触摸屏或 LCD显示屏,以及扬声器。设计良好的接口可让医疗服务提供者更好地监控病患状态,有效执行治疗方案。用户接口、音频/警报和数据记录/通信模块可以集成在一个混合信号FPGA芯片中。该器件中的嵌入式微处理器和Flash能够完成数据记录任务,而其它IP解决方案可协助管理数据输入、警报及其它任务。
在血液透析仪中,功率和热管理单元执行关键任务,比如血液的温度感测和系统上电/断电功能(如图2所示)。精确测量温度并控制系统功率可能会增加成本,但也会提高设备的可靠性,从而延长产品的使用期限和病患的寿命。现今混合信号FPGA中的模拟电路使得这些关键性功能得以轻易集成和实现。
小结
由于医疗服务成本的不断攀高、慢性病的流行以及人口老化,对价格低廉、易于使用且可靠的医疗设备的需求非常巨大,以期改善全球医疗服务。对于从家庭应用到临床医疗的多种医疗设备,两种趋势随之出现:即小型化和便携性。
许多临床医疗设备都是基于微处理器的机电装置,采用同一套构建模块:功率控制和温度管理;包括键盘、LCD监视器和音频控制的用户接口;用于数据记录的Flash或EEPROM;以及用于连接其它机器的设备接口。虽然存在众多相似性,但各个医疗应用设备的专用性仍然相当强,而且往往非常复杂。因此,除了 “核心”元件之外,临床医疗设备还包含了对应于自身任务的独特的诊断或功能性“模块”。这些千变万化的特性和要求以及复杂的功能性都集成在小占位面积、低功耗、高精度且工作可靠的芯片中,使临床医疗设备成为可重编程非易失性半导体技术的一个绝佳市场。
特别地,基于Flash的混合信号FPGA尤其适合于这些应用,因为它们不但具备高度集成性、智能功率及系统管理功能,还拥有小占位面积和高度可靠等特性。这些优势有助于临床医疗设备满足电池规范、减小设计占位面积、把热耗降至最低并确保可靠工作。此外,由于无需分立式器件,加之将处理功能、模拟输入及输出、实时时钟及Flash等多项功能集成在单个混合信号FPGA中,还可提高可靠性、降低成本和功耗,并最大限度地减小板卡空间。