首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 单元电路介绍 > 其它电路
基于FPGA的神经元自适应PID控制器设计
来源:本站整理  作者:佚名  2009-08-25 09:59:45



引言
迄今为止,PID控制器因其具有结构简单、容易实现等特点,仍是实际工业过程中广泛采用的一种比较有效的控制方法。但当被控对象存在非线性和时变特性时,传统的PID 控制器往往难以获得满意的控制效果。神经网络以其强大的信息综合能力为解决复杂控制系统问题提供了理论基础,许多学者也通过软件仿真的形式验证了神经网络控制的可行性并提出了一些新的算法,但由于目前没有相应的硬件支持,只通过软件编程,利用串行方法来实现神经网络控制必然导致运算速度低,难以保证实时控制。FPGA结构灵活、通用性强、速度快、功耗低,用它来构造神经网络,可以灵活地实现各种运算功能和学习规则,并且设计周期短、系统速度快、可靠性高。
本文主要介绍了用FPGA实现单神经元自适应PID控制器的方法,并对基于BP神经网络整定的PID控制器的FPGA设计做了概述。
神经元自适应PID控制器的
基本原理和算法
单神经元PID控制器的结构
三输入单神经元模型如图1所示。其中x1,x2,x3是输入量,w1、w2、w3是对应的权值,K为比例系数。

与传统PID控制器经离散处理后的增量表达式
苪(k)=kie(k)+kp(e(k)-e(k-1)+kd(e(k)-2e(k-1)+e(k-2))
比较而知,图1是用单神经元实现了自适应PID控制,权值w1、w2、w3分别对应于传统PID控制器的ki,kp和kd。
学习算法
经过大量的实际应用,实践表明PID参数的在线学习修正主要与芿(k)和e(k)有关。因此可将单神经元自适应PID控制算法中的加权系数学习修正部分进行修改
本文里用FPGA实现的单神经元学习算法就采用了这种基于改进规则的方法。

神经元算法在FPGA
上的实现
FPGA上浮点数的运算
浮点加、减、乘、除运算单元
的设计
神经元PID算法离不开浮点运算,浮点运算在高级语言中使用很方便,但是通过硬件来实现就比较复杂,所以大多数的EDA软件目前还不支持浮点运算,浮点运算器件只能自行设计,其中主要考虑的是运算精度、运算速度、资源占用以及设计复杂度。
浮点数的加法和减法需要经过对阶、尾数运算、规格化、舍入操作和判断结果正确性5个步骤,其设计原理图如图2所示,整个运算过程由op_state状态机控制,op输入端决定运算法则(0为加法,1为减法),a、b两端分别输入24位浮点数格式的加数和被加数,经过float_add_minus模块的对阶、尾数加(减)、舍入操作和判断结果正确性四步运算,再由result_ normalization模块规格化处理后输出。
浮点乘法相对比较简单,两个浮点数相乘,其乘积的阶码是两个数的阶码之和,乘积的尾数是两个数尾数的乘积,符号是相乘数符号的异或,结果一样需要规格化。

[1] [2]  下一页

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:296,210.90000 毫秒