PCB 光板测试机基本的测试原理是欧姆定律,其测试方法是将待测试点间加一定的测试电压,用译码电路选中PCB 板上待测试的两点,获得两点间电阻值对应的电压信号,通过电压比较电路,测试出两点间的电阻或通断情况。 重复以上步骤多次,即可实现对整个电路板的测试。
由于被测试的点数比较多, 一般测试机都在2048点以上,测试控制电路比较复杂,测试点的查找方法以及切换方法直接影响测试机的测试速度,本文研究了基于FPGA的硬件控制系统设计。
硬件控制系统
测试过程是在上位计算机的控制下,控制测试电路分别打开不同的测试开关。测试机系统由以下几部分构成: 上位计算机PC104 、测试控制逻辑(由FPGA 实现) 、高压测试电路。 其中上位机主要完成人机交互、测试算法、测试数据处理以及控制输出等功能。 FPGA 控制高压测试电路完成对PCB 的测试过程。
本系统以一台PC104 为上位计算机,以FPGA为核心,通过PC104 总线实现上位机对测试的控制。
测试系统总体框图如图1所示。
FPGA与PC104的接口电路
PC104总线是一种专为嵌入式控制定义的工业控制总线,其信号定义与ISA 总线基本相同。 PC104总线共有4 类总线周期,即8 位的总线周期、16 位的总线周期、DMA 总线周期和刷新总线周期。 16 位的I/O总线周期为3 个时钟周期,8 位的I/O总线周期为6 个时钟周期。为了提高通信的速度,ISA总线采用16 位通信方式,即16 位I/O方式。为了充分利用PC104的资源,应用PC104的系统总线扩展后对FPGA 进行在线配置。正常工作时通过PC104总线与FPGA进行数据通信。
基础电路设计(十)高频电路用电路板设计技术探索
·电子设备中电路板布局、布线和安装的抗ESD设计规则
·PCB导线设计技术(上)
·SI设计及板级EMC:汤昌茂
·线路板PCB覆铜经验之我谈
·PCB电路板差分阻抗测试技术
·PCB导线设计技术(下)
根据测试机系统设计要求,需要对测试电压及两通道参考电压进行自检,即A/D转换通道至少有3 路。两路比较电路的参考电压由D/A输出,则系统的D/A通道要求有两通道。 为了减少A/D及D/A的控制信号线数,选用串行A/D及D/A器件。综合性能、价格等因素, 选用的A/D器件为TLC2543,D/A器件为TLV5618。