摘要:在讨论了无线同播特点和频率校准基本原理的基础上,提出了一种基FPGA的无线同播频率校准装置的设计方案,实现了高精度广播频率的输出,给出了详细设计过程和实际测试结果。
关键词:现场可编程门阵列;无线同播;频率校准
0 引言
近年来,无线同播系统在民事和警事中的应用日益广泛,其快速搭建和空中接入等优势在512地震的救灾调度中得以充分体现。同播系统工作时,所有发射站会在同一时刻点以相同频率向外广播,由于各站的发射频率相对于标准频率有不同偏差,在功率重叠区产生频率叠加,出现同频干扰。目前,国内外通信厂家的同播发射机的发射频率偏差大都在1ppm(parts per million)以上,不通过校准,无法达到0.05ppm正常通话的最低要求。有线同播系统是利用光纤网络校准发射频率的。无线同播系统目前只能通过两种方法解决:一是设置中心站,但系统响应速度慢;二是尽量缩小功率重叠区,其建站周期长而且可靠性低。两种方法都没有从根本上解决无线同播系统的同频干扰,发射频率的校准已经成为无线同播系统发展的瓶颈。因此,本文提出一种基于FPGA技术的频率校准系统的设计方案。
1 系统总体设计
1.1 同频干扰的产生和解决方法
一个无线同播系统需要架设若干个大功率发射站点,才能满足大区域的通信需求。站点间硬件和工作环境各有差异,导致各站的频率偏差不同。例如两个发射频率为350MHz的站点,一个的频偏为+1ppm,另一个为-1ppm,在功率重叠区就会产生700Hz的频率差,形成啸声,影响通话质量。从理论上讲,要保证同频覆盖区的通话质量,必须使各发射站的频偏保持在0.05ppm以下。校准各发射站频率的最好方法,是为其提供统一可靠的基准时钟信号。GPS定位卫星信号精度高,没有时间和地域的限制,可以作为基准时钟信号同步各站的基准振荡器,解决同频干扰的关键性问题。
1.2 系统硬件设计
频率校准系统主要由高精度GPS信号接收器、FPGA芯片、VC-TC2XO(压控恒温晶振)、高精度DAC(数模转换器)等部分组成。VC-TCXO为FPGA提供工作时钟,也为发射提供基准频率。FPGA通过GPS秒脉冲信号计算标准时长,记录下这段时间内VC-TCXO产生的脉冲总数,与标准的脉冲数进行对比,最后通过DAC对VC-TCXO进行电压校正。校准后的VC-TCXO频率通过FPGA内部PLL倍频,成为发射频率。基本硬件结构框图如图1所示。
FPGA编程比较灵活,可设置任意位的片上寄存器,保证了脉冲计数的精度,适用于高精度的频率校准。本设计采用Actel公司Fusion系列的AFS600,属于Flash架构,内部集成了60万逻辑门。以Flash为基础的FPGA将配置信息储存在片上Flash单元中,一旦完成编程,配置数据就会成为FPGA结构的固有部分,在系统上电时无需通过外部SRAM载入配置数据。AFS600可靠性高、功耗低,节省外部元件,适合开发手持设备。
本设计采用的GPS接收机是Motorola公司生产的M12M授时型OEM模块,输出秒脉冲信号的精度±20ns。压控恒温晶振采用华晶达电子公司的VC-TCXO(503212.8M),中心频率12.8MHz,工作电压3.3V,温度稳定度±1.0ppm,老化率±1.0ppm/年,控制电压范围1.65±1.0v,可调节频率范围1 2.8MHz±300Hz。高精度DAC采用TI公司的。DAC8552,具有16位精度,可串行SPI控制方式,参考电压为3.3V。