1. 引言
石英晶体谐振器(以下简称为石英晶体)作为一种性能优良的频率基准和时钟源在电子领域有着广泛应用。石英晶体的中间测试在石英晶体的生产中是处于微调和封装之间的工序,要求对石英晶体的基本电参数进行测量,以保证产品最终质量。在石英晶体的中间测试中,需要测量串联谐振频率、串联谐振电阻、负载谐振频率、负载谐振电阻、静电容、动电容、频率牵引灵敏度和DLD等参数。其中,静电容C0主要由石英晶体两端所镀银膜决定,表征了石英晶体的静态特性,与石英晶体的串联谐振频率和负载谐振频率等应用指标密切相关。根据静电容和其它参数的关系,还可以计算出负载谐振电阻、动电容、频率牵引灵敏度和DLD等参数的值,这在实际测量中是经常采用的方法。静电容的测量是石英晶体中间测试的重要内容。目前,IEC(国际电工委员会)所推荐的石英晶体测量的标准方法是π网络零相位法。在该方法中,未规定测量静电容的标准方法。若采用谐振法、交流电桥法等常用方法来测量静电容,会增加整个测量系统的复杂性,并且对谐振频率的测量产生不利影响。本课题提出了一种基于π网络零相位法的测量石英晶体静电容的新方法,并据此设计制作了实验测量系统。
2.测量原理与电路
2.1石英晶体的等效电参数模型
石英晶体的等效电参数模型如图1所示:
其中,C0是石英晶体两电极间的电容,称为石英晶体的静电容,C1称为石英晶体的动电容,L1称为石英晶体的动电感,R1表示石英晶体在振动时的损耗,称为串联谐振电阻。当激励信号的频率等于石英晶体的谐振频率时,其等效电参数模型为纯电阻。由于C1、L1的值非常小,当激励信号的频率远离石英晶体的谐振频率时,R1、C1、L1的影响可以忽略不计,此时,石英晶体等效成一个值为C0的电容。
2.2 π网络法原理
IEC所推荐的π网络如图2所示:
网络的阻抗与测试仪表的阻抗相匹配,并衰减来自测试仪器的反射信号。M为待测石英晶体。Va是输入激励信号,Vb是π网络输出信号,它们都是矢量电压信号。当石英晶体处于谐振状态时,其表现为纯电阻特性,此时Va与Vb之间相位差为零,Va的频率即为石英晶体的串联谐振频率。所以,通过改变Va的频率并检测Va与Vb之间相位差可以找到石英晶体的谐振频率。对于π网络中石英晶体的静电容如何测量,IEC并未推荐标准方法。π网络由对称的双π型电阻回路组成,R1、R2和R3构成输入衰减器,R4、R5和R6构成输出衰减器,它们的作用是使
2.3 常用测电容的方法
常用的测量电容方法主要有谐振法、交流电桥法和充放电法。谐振法是将电容引入振荡电路中,使得振荡频率成为电容的函数,通过测量该频率值来计算电容值。交流电桥法将电容接入交流电桥中,调整电桥中的可调电阻和可调电容使得电桥平衡,根据平衡时电桥各臂的电阻和电容值计算被测电容值。充放电法使用交流信号源对电容充电,然后将电容接入放电电路中,通过测量电容的放电时间来计算电容值。由于π网络法是通过测量π网络两端的矢量电压来得到石英晶体电参数值,与上述三种方法并不一致,所以如果采用这三种方法测量石英晶体的静电容都需要增加额外的测量电路,并且会因此增加π网络电路的杂散项,对测量石英晶体的谐振频率产生不利影响。
2.4 基于π网络的静电容测量方法
利用DDS(直接数字频率合成)信号源作为激励源,其输出交流信号频率远离石英晶体谐振频率,该信号激励接有被测石英晶体的π网络。此时,石英晶体等效于一个值为C0的电容。π网络的输出电压与该电容存在一定的函数关系,由于输入电压和π网络的参数已知,测量输出电压并根据这一函数关系,可以计算出C0值。这种方法与测石英晶体谐振频率的方法很相似,都需要利用DDS输出信号作为激励信号并检测π网络输出的矢量电压。两者区别在于测量谐振频率要求检测输入电压和输出电压之间相位差,而测量静电容则要求测量输入电压和输出电压的幅值。因此,对这两个矢量电压信号采用幅相检测的办法可以使测量石英晶体的谐振频率和静电容统一起来。
原理框图如图3所示:
其中,DDS输出两路幅值、频率和相位均相同的信号。一路激励π网络,另一路输入幅相检测模块。本课题要求石英晶体谐振频率的测量范围为0~200MHz。在这一范围内选取30MHz和68MHz两个频率点作为激励信号的设定频率。具体方法是,当石英晶体的谐振频率在30MHz附近时,设定DDS输出信号频率为68MHz,反之,则设为30MHz。激励信号经过π网络后输出电压如式