首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 单元电路介绍 > 其它电路
基于人工免疫网络和AR模型的聚类与预测算法
来源:本站整理  作者:佚名  2009-04-03 13:47:06



                

                                     图2 原始序列图形

        原始含噪声数据的波形如图2所示,从上至下依次是指数形式、常数形式和多项式形式,数据有效长度为 ,原始数据中叠加的高斯白噪声符合 分布。在基于人工免疫网络的数据聚类过程中,线性归一化的原始数据作为抗原输入人工免疫网络,设置抑制阈值 ,最大循环代数为 ,记忆细胞规模为 ,其中的10次数据聚类结果如表1所示。


表1 人工免疫网络的聚类结果

                         
        如果将表1所示的10次实验均值作为聚类中心,则可以发现,它们大致位于各组数据的几何中心,同时也表明聚类结果的稳定可靠。

        采用AR模型对原始数据进行预测时,通过试算法得出指数形式数据的AR模型为5阶,常数形式数据的AR模型为6阶,多项式形式数据的AR模型为11阶,预测误差如图3所示。

        根据图3所示的预测误差可以看出,随着时间的推移,预测结果的误差逐渐增大,并逐渐偏离数据中心,其中常数类型数据的预测误差最小,多项式类型数据的预测误差最大。

                      

图3预测结果误差 (a)指数形式数据 (b)常数形式数据 (c)多项式形式数据
 
6 结论


        本文面向复杂系统综合健康管理对数据聚类和数据预测实际需求,充分利用人工免疫网络和AR模型的各自优势,提出了基于人工免疫网络和AR模型相结合的数据聚类和预测算法,并针对三种形式的原始数据进行了仿真实验,实验结果初步验证了所提出算法的可行性和有效性。本文提出的算法具有较强的通用性、适应性、鲁棒性,如何有效地提高聚类精度和预测准确性将是继续深入研究的内容。

上一页  [1] [2] [3]  下一页

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:192,445.30000 毫秒