LTE和其他无线系统在空中接口上存在很大的不同,对于测试就提出了新的要求。R&S凭借其积累的丰富经验成果,不仅可以为LTEFDD,也可以为LTETDD无线设备研发提供完整的测试产品线。
2007年11月,3GPPRAN151会议通过了27家公司联署的LTETDD融合帧结构的建议,统一了LTETDD的两种帧结构。融合后的LTETDD帧结构是以TD-SCDMA的帧结构为基础的,这就为TD-SCDMA成功演进到LTE乃至4G标准奠定了基础。
LTETDD技术特点
由于FDD和TDD两种双工方式在物理特性上所固有的不同,LTE系统为TDD的工作方式进行了一系列专门的设计,这些设计在一定程度上参考和继承了TD-SCDMA的设计思想。
无线帧结构
因为TDD采用时间来区分上、下行,资源在时间上是不连续的,需要保护时间间隔来避免上下行之间的收发干扰,所以LTE分别为FDD和TDD设计了各自的帧结构,即Type1和Type2。
在FDDType1中,10ms的无线帧分为10个长度为1ms的子帧,每个子帧由两个长度为0.5ms的slot组成。在TDDType2中,10ms的无线帧由两个长度为5ms的半帧组成,每个半帧由5个长度为1ms的子帧组成,其中有4个普通的子帧和1个特殊子帧。普通子帧由两个0.5ms的slot组成,特殊子帧由3个特殊时隙(UpPTS,GP和DwPTS)组成,如图1所示。
图1 LTE 帧结构类
在LTE中TDD与FDD帧结构最显著的区别在于:在TDDType2帧结构中存在1ms的特殊子帧,该子帧由三个特殊时隙组成:DwPTS,GP和UpPTS,其中DwPTS始终用于下行发送,UpPTS始终用于上行发送,而GP作为TDD中下行至上行转换的保护时间间隔。三个特殊时隙的总长度固定为1ms,其各自的长度可以根据网络的实际需要进行配置。
上下行的时间分配
TDD另外一个显著区别于FDD的物理特征是FDD依靠频率区分上下行,因此其单方向的资源在时间上是连续的;而TDD依靠时间来区分上下行,所以其单方向的资源在时间上是不连续的,时间资源在两个方向上进行了分配。
允许同一时间上存在多个随机接入信道(频分)是TDD上下行时分的结构形成的又一设计结果。在LTEFDD的设计中,同一时刻只允许一个随机接入信道的存在,即仅在时间域上改变随机接入信道的数量。而在TDD中,时间资源已经在上下行进行了分配,同时由于不同的上下行配比的存在,可能存在上行子帧数目很少的情况,因此在TDD中需要支持频分的随机接入信道。
同步信道
同步信道是另一项体现不同双工方式的设计。LTE中用于小区搜索的同步信道包括“主同步信号”和“辅同步信号”。在两种帧结构中,同步信号具有不同的位置:在FDDType1中两个同步信号连接在一起,位于子帧0和5的中间位置;而TDDType2中,辅同步信号位于子帧0的末尾,主同步信号位于特殊子帧,即DwPTS的第三个符号。在两种帧结构中,同步信号在无线帧中的绝对位置不相同,更为重要的是,主、辅同步信号的相对位置不同:在FDD中两个信号连接在一起,而在TDD中两个信号之间有两个符号的时间间隔。由于同步信号是终端进行小区搜索时最先检测的信号,这样不同的相对位置的设计使得终端在接入网络的最开始阶段就可以检测出网络的双工方式,如图2所示。
图2 同步信道
R&S LTE TDD 测试方案