Spectra Quest内部的Sigxplorer接受IBIS模型,然后将其转换为独特的设计模型化语言DML,以完成复杂I/O结构的建模。而且,Sigxplorer中的Constraint Manager能够对仿真中使用的参数进行管理,并将其嵌入到后续布局布线约束条件中。
反射分析
反射即传输线上的回波,是由于阻抗的不连续而引起的。源端与负载端阻抗不匹配会引起线上的反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负;反之,反射电压为正。理想的情况是输出阻抗、传输线阻抗及负载阻抗均相等,此时,传输线的阻抗是连续的,不会发生任何反射。反射电压信号的幅值由源端反射系数rS和负载反射系数rL决定,分别如下式所示:
式中,RS为源阻抗,Z0为传输线阻抗,RL为负载阻抗。若RL=Z0,则负载反射系数rL=0;若RS=Z0,则源端反射系数rS=0。
解决传输线反射的关键是阻抗控制,阻抗匹配可以抑制传输线反射,主要有:并联端接、Thevenin等效并联端接、AC端接和串联端接法四种匹配端接方法。这里采用Thevenin等效并联端接法,对检测器电路输入部分阻抗进行控制,然后提取电路拓扑结构,分别仿真匹配端接前、后电路的传输特性。
用频率为50MHz,占空比为0.5的Pulse信号作触发,图4和图5分别为利用Signoise工具仿真得到的匹配端接前、后的仿真波形。从图中可以看出,端接前,波形在上升沿有畸变发生,容易引起误操作。匹配端接有效地消除了信号的畸变,单调性很好,而且在上升沿拉升了原信号,提前进入电平切换,增加了信号的稳态时间,信号的上升沿也比较平稳。虽然在高电平的维持阶段有上过冲,但对信号确认没有影响,信号质量比较理想。另外,信号传输线长度对反射也有一定的影响。仿真发现,传输线较长时,出现了预示的反射现象,如图6所示;而传输线较短时,仿真波形和分析结果吻合得很好,如图7所示。表1为上述两种情况下的波形仿真参数。所以,布线长度不同,其处理方法也应不同。一般来说,走线长度小于2英寸,以集总参数的LC电路来处理;大于8英寸,则以分布参数的传输线电路来对待。
延时分析
随着系统工作频率的升高,当信号上升沿或下降沿很陡时,布线延时不能再被忽略。它对信号的建立和保持起着至关重要的作用,甚至可能影响系统的时序,产生误操作,所以必须予以考虑。MCM高速电路设计要求存储芯片的相位偏差不能过大,因此驱动端到接收端的布线延时应大致相等。延时和信号线长度的关系如下式所示: