首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 单元电路介绍 > 其它电路
基于窄脉冲反射仪的高速数据采集系统的设计
来源:本站整理  作者:佚名  2009-04-23 09:49:55



    脉冲波形产生和反射波形的形成,在同一测试电缆线上是多次可重复出现的,只要发射脉冲产生一次,反射脉冲就会产生一次,而且波形是相似的,当要求对波形进行100MHz的数据采集时,只要使用转换速率为25MHz的A/D转换器进行四次采集转换,每次的间隔是10ns就可以达到lOOMHz的时间分辨的效果,因此可以采用该方案进行数据采集,将系统设计的成本降到最低,满足电缆测试的高精度。
2.1 主要元器件的选择
    由于单片机价格低廉,功能优越,因此,CPU使用ATB9C5l,它的指令系统与MCS-51完全兼容。为了用最低的价格获得高的存储深度,有最高的(单位速度×单位存储深度)/价格比,本设计选用8位128k容量的高性能COMS静态存储器CY7C109/CY7C1009,将存储器的地址端A0~A16对应地连接到逻辑控制电路中生成的地址信号QO~Q16上,将使能端和写有效端给单片机和控制逻辑进行控制,就可以进行对应的存储数据和读取数据操作。系统中最高的采样频率为25MHz,为了实现这样的高速采集,我们选择了TI公司的A/D转换器TLC5540,其最高采样速率可以达到40MHz。
2.2 单片机及其控制设计
    单片机控制部分包括系统清零和读出数据,其主要作用是:①负责A/D转换过程的启动及完成控制;②对自动存储于存储器内的采集数据进行处理。其中Pl口做数据线,P0.0为系统清零位(包括地址以及控制逻辑部分),P0.1控制A/D与存储器的连接和断开,P0.2为采集完成位,P0.3读出数据地址信号控制,P0.4完成对存储器的读写控制。单片机首先控制A/D直接和存储器连接,接着给出系统清零信号,将地址和控制逻辑中的计数器清零,等待触发脉冲的到来。开始数据采集后,单片机查询采集是否完成,采集完成后,系统再一次清零,断开A/D和存储器的连接,控制地址发生器将存储在里面的数据读出,一次采集就完成了。
2.3 专用控制逻辑的设计及其CPLD实现
    窄脉冲时域反射仪要求的分辨率较高,所以要求的采样频率相当高,例如要实现1m的测距分辨率,在波速200m/ns的情况下,要求波形抽样的时间分辨率约为10ns,对应的数据采集频率达100MHz。
    逻辑控制要实现对一固定波形多次采样并进行波形拼凑,实现高速数据采集电路,即将需一次完成的100MHz高速采样转换为相应的较低频率的多次采样,将各次采样的结果进行重新组合,以拼凑出一个完整的100MHz采样波形。系统的实际数据采集速度是25MHz,采样时间间隔40ns,每完成一次波形测试,仪器要连续发射四次脉冲,数据采集电路起动四次,由于障碍点是固定的,每次发射脉冲时,仪器接收到的脉冲反射波形是相似的,只不过发射脉冲的时刻与起动采样的时刻延时分别从0ns依次以10ns的间隔增加到40ns。
    本设计选用CPLD器件MAX7128S实现对高速数据采集系统的控制,硬件框图如图3所示。

    虚线框内的是硬件逻辑控制模块,该模块可以完成我们所设计的高速数据采集所需的A/D转换器和存储器的控制信号。
2.3.1 控制逻辑的实现
    高速数据采集控制逻辑的实现主要是通过两个两位的计数器来实现的,连接TRIG(触发启动信号)的计数器(启动计数器)是判断当前是第几个脉冲,它的状态过程是:00→0l→10→ll,连接100MHz晶体振荡器的计数器(晶振计数器)来统计10ns的个数,就是说当连接触发启动信号的计数器从00→0l时,晶振计数器是00状态,这时后面的状态选择输出一个由低到高的跃变OP,控制后面25MHz数据采集开始,当启动计数器又有一个触发过来,它就从0l→10,这时晶振计数器就开始从00→0l,也就是统计一个10ns,统计完了以后,后面的状态选择又输出一个由低到高的跃变OP,开始25MHz数据采集。以后依次类推,分别是延迟20ns和30ns开始数据采集。

上一页  [1] [2] [3] 

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:260,085.90000 毫秒