1 主要原理
要在电路中获得可以通过单片机计算的电流信号,必然先经过采样,变换为离散的数字信号。设有周期函数:
其中:Ω为频率;X为幅度;周期为T。以x(nT,)作为周期信号x(t)的抽样,每个周期内抽样N点,即T=NT,经傅里叶变换后形成变换对,简化后可表示为:
其中:,n∈(-∞,+∞),k∈(∷∞,+∞);X(k)的物理意义是序列x(n)第k次谐波分量的幅度。
在使用计算机或者单片机做信号处理方面的工作时,要求信号在频域和时域都是离散的,且都是有限长。离散傅里叶级数满足离散要求,但是在时域、频域虽然都是周期函数其也都是无限长的,所以在时域、频域中各取1个周期,可以得到傅里叶变换对:
再根据快速傅里叶变换(FFT)理论,利用WN形成“蝶形单元”,经过分组、码位倒序等步骤计算,这样即可方便地通过计算机或单片机进行变换求其频谱。在此指出的检测谐波电流的仪器主要系统就是通过FFT方法计算出相应的谐波分量及其参数。
1.1 分数谐波的测量
可以看出,利用式(4)进行FFT可以准确地分离出被测电流中整数次谐波信号。正如在前文中所指出的,电弧炉系统中不仅包括整数次谐波,还包括大量分数谐波和间谐波。例如,对于频率为50 Hz的电网电流信号,其周期为20 ms,电弧炉作为负载可能还会产生出频率在50 Hz以下或者不为50 Hz整数倍的谐波。如果在检测时采样的时间正好为一个周期20 ms,则频率低于50 Hz的谐波信号就无法检测出来,在这里,可以通过延长采样时间的方法分理出分数次谐波。具体方法:对于基波频率为Ω,周期为T的电网电流信号来说,如果现在需要检测的是频率为Ω0/l的谐波分量(l为不为零的整数),则采样时间必须为T1=lT。这样采样出来的序列可以看成是频率为Ω1=Ω/l的电流信号的1个周期;如果系统抽样频率不变,仍然是每T时间内抽样N个点,即T=NTs,则T1=lT=lNTS,可得:
这样,在进行相关的FFT变换过程,通过定义新的蝶形因子WlN,得出的X(k)具有新的物理意义,即k/l次谐波分量的幅度。也就是说,通过设定不同的l值,改变FFT程序中的蝶形因子,可以分离出1/l次谐波分量。
1.2 谐波参数的计算
在检测过程中,由于电弧炉系统谐波具有利用随时间随机变化的特点,所以相比于连续测量每个时刻的谐波分量,测量一段短时间内谐波信号的平均有效值,既能体现出谐波分量短时间内的具体情况,也能体现出谐波在一段时间内的变化趋势。因此需要在某个时间内利用采样取得的离散信号来计算有效值、功率以及功率因子等谐波参量。
设在1个采样周期内采样N次,采样得到的电压为Vi,电流为ii,其中i=1,2,…,N,则电压的有效值为:
其中:Unk为k次谐波的电压幅值;Ink为k次谐波的电流幅值;αk一βk为忌次谐波的电压和电流的相位差。各次谐波分量的计算应用FFT进行谐波分析,也就是对采样信号经过FFT变换得到的信号频谱用来计算各次谐波分量。时域中的采样序列x(n)经FFT变换后成为频域中的复序列:
其中:Xr(k)为实部;Xi(k)为虚部。
由于x(n)为实数列,因此对应的复数序列是共扼对称的。N点采样值经FFT变换后只能得到N/2个相互独立的结果。例如,当采样点数为128时,经FFT后,最高只能计算出64次谐波分量。根据上式就可求出k次谐波电压、电流的幅值。单相k次谐波电压含有率:
单相谐波电流含量:
电流谐波总的畸变率为: