1 主要器件结构及工作原理
1.1 DSl8820结构及工作原理
Dallas公司生产的DSl8820可编程单总线数据温度传感器共有3种封装形式:8管脚SO封装、8管脚μSOP封装和3管脚TO一92封装。该设计中为了节省空间采用3管脚的TO一92封装,它的管脚排列图和底视图如图1所示,其中GND为接地管脚,VDD为外部供电电源管脚,DQ为数据输入/输出管脚。
DSl8820内部结构如图2所示,包括供电电路、64 b ROM、内部存储器和存储器控制逻辑4部分。64 b ROM中存储着每个DSl8820芯片独有的64位ROM ID码,这是系统用来识别DSl8820芯片的标志。其中最低8位是DSl8820的家族码:28H。中间48位是每片DSl8820独有的串行码。最高8位是用前56位计算得到的循环冗余校验码。
内部存储器由9。Byte SRAM和3 B E。PROM组成。SRAM中:ByteO和Bytel是温度寄存器,用来存储采集到的温度值。Byte0的内容是温度的低8位,Bytel是温度的高8位。。Byte2和Byte3为高低温警报寄存器。Byte4为配置寄存器,用来设置器件温度采集精度。这3个字节中的值可以拷贝到E。PROM中,保证掉电后数据不会丢失,重新上电后E。PROM中的值将自动重载人SRAM中。Byte5,Byte6,Byte7保留为内部使用。Byte8存储CRC码。
DSl8820有2种供电方式:寄电方式和外部供电方式。寄电方式非常适用于需要远程温度测量和空间受限的场合。当工作于这种方式时,管脚3必须接地。总线处于高电平时DSl8820通过DQ管脚从1一Wire网络上窃取能量并存储一部分电荷到寄电电容中,总线处于低电平时释放寄电电容中的电荷给DSl8820供电。在寄电方式中寄电电容中存储的电荷能满足DSl8820大部分操作的要求,但是当执行温度转换和数据拷贝命令时操作电流提高到1.5 mA,这将导致内部弱上拉电阻上产生不可接受的压降,同时这个电流也高于寄电电容能够提供的电流,所以必须外接强上拉电路以满足这一类命令的要求。当处于外部供电方式下时则不需要外接强上拉电路,直接通过管脚3从外部供电。
在温度超过100℃条件时,处于寄电方式下的DSl8B20可能不能保证正常通信,所以在某些特殊场合下使用外部供电方式比寄电方式更加可靠。DSl8820是一种可编程的基于1一Wire总线标准的数字式温度传感器,可以通过SRAM中的配置寄存器来选择测量分辨率,其上电默认值为12位精度,对应分辨率为0.062 5℃。其他可选择的精度包括11位、 10位和9位,对应的分辨率分别为O.125℃,O.25℃, O.5℃。DSl8820上电后处于空闲状态,可通过微处理器发送转换命令44H来启动1次温度测量和A/D转换,并将结果存储在温度寄存器中,此后DSl8820返回空闲状态。如果Dsl8820处于外部供电模式,微处理器可以发送“读时隙”来查看温度采集转换过程是否完毕,如果结束则应答为1,没结束则应答为O。如果 DSl8820处于寄电方式下则不能使用该功能。DSl8820的温度数据值是以摄氏度为单位的。
1.2 DS2480B介绍及工作原理
1一Wire通信协议可以通过微处理器上的一个I/O 引脚实现,但是要创建可靠的1一Wire网络,必须提供正确的时序和适当的输出电压摆率,如果1一Wire主机发送的时序不正确会导致与1一Wire从器件之间的通信间断或完全失败,并限制网络的长度。DS2480B是从串行接口到1一Wire网络协议转换的桥接器。使用这个桥接器和UART连接就能产生严格定时和电压摆率控制的1一Wire波形,并能减轻主机产生1一Wire时序信号和对1一Wire总线进行采样的负担。Ds2480B 接收指令与数据,执行1一Wire操作,并将结果返回至主机。图3为1一Wire复位操作、写1/读数据操作、写 0操作的时序图,这3种操作是1一Wire操作中必须具备的基本操作,几乎所有的其他1一Wire操作都可以由这3种操作构成。由于该设计工作在Flexible模式下,以下提供的参数都是Flexible模式下适用的参数。