1 TDC-GP2的特性分析
TDC-GP2是德国ACAM公司继TDC-GP1之后新推出的一款高精度时间间隔测量芯片。与前代芯片相比,具有更高的精度、更小的封装和更低的价格,更适合于低成本工业应用领域。TDC-GP2内部结构,如图1所示。
该系统主要由脉冲产生器、数据处理单元、时间数字转换器、温度测量单元、时钟控制单元、配置寄存器以及与单片机相接的SPI接口组成。在实际应用中,由于TDC-GP2的功耗很低,使得TDC-GP2的输入/输出电压(工作电压)为1.8~5.5 V,核心电压为1.8~3.6 V,所以可以采用电池供电,使用方便。同时单片机由4线的SPI接口相连,可以把TDC-GP2作为单片机的一个外围设备来操作。通过内部ALU单元计算出时间间隔,并将结果送入结果寄存器保存起来。通过对TDC-GP2内部寄存器的设置,可以多次采样并将结果保存。TDC-GP2是基于内部的模拟电路测量“传输延时”来进行的,是以信号通过内部门电路的传播延迟来进行高精度时间间隔测量的。TDC-GP2时间间隔测量原理如图2所示。
START信号与STOP信号之间的时间间隔由非门的个数决定,而非门的传输时间可以由集成电路工艺精确的确定。同时,由于门电路的传输时间受温度和电源电压的影响比较大,因而该芯片内部设计了锁相电路和标定电路。
在时间测量芯片TDC-GP2的测量范围1中,两个STOP通道共用一个START通道。每个通道的典型分辨率为50 ps,每个STOP通道都可以进行4次采样。具有15 ns间隔脉冲对的分辨能力,测量范围为2.0~1.8μs,每个通道都可以选择上升沿或下降沿触发。ENABLE引脚提供强大的停止信号产生的功能,可测量任意两个信号之间的时间间隔。
2 IGBT导通延迟时间测量的原理
IGBT导通延迟时间的精确测量,是通过测量IG-BT的控制信号、驱动信号和导通电流信号间的时间间隔得到的,流程图见图3。通过信号处理隔离电路将控制信号、驱动信号和导通电流信号输入时间测量芯片TDC-GP2。其中,IGBT的控制信号作为时间测量芯片TDC-GP2的START端口输入,驱动信号和IGBT的导通电流信号作为STOP1和STOP2端的两个脉冲输入。由此可得START与STOP1端口的时间间隔为控制信号与驱动信号的延迟时间;START与STOP2端口的时间间隔为控制信号与IGBT导通信号的延迟时间,两者的时间差即为IGBT相对于驱动信号的导通延迟时间。
3 IGBT延迟导通时间测量系统设计
3.1 测量系统硬件设计
系统主要由脉冲信号取样器、脉冲输入信号整形电路、TDC-GP2测量电路、AT89S52单片机、液晶显示电路、电源电路、时钟电路组成。TDC-GP2的每个测量通道都提供一个使能引脚,可独立地设置这两个引脚进行通道选择。TDC-GP2需要一个2~8 MHz的高速时钟进行校准用。TDC-GP2只是在进行时间测量时才必须用振荡器,且能够自动控制振荡器的开启时间。