所谓图像分割就是指把图像分成各具特性的区域,并提取出感兴趣目标的技术和过程。它是数字图像处理中的关键技术之一,是进一步进行图像识别、分析和理解的基础。目前图像分割方面现有的算法非常多,将它们进行分类的方法也提出了不少。一般分为3类:(1)阈值分割;(2)边缘检测;(3)区域提取。但还没有一种方法能普遍适用于各种图像。因此,对于图像分割的研究还在不断深人之中,也是目前图像处理中研究的热点之一。随着科技的发展进步,图像处理在军事中的运用也越来越广泛,这主要集中在迷彩设计这方面。而现在军事上的伪装迷彩是现代高技术战争中隐藏武器装备、保存自我的重要手段,也是消灭敌人的需要。因此对于迷彩的设计研究也一直都是各国的热门话题。文中主要以某山地航拍图为研究对像,对其进行背景分析然后再实现图像分割,为后期迷彩设计做准备。由于该山地背景纹理特征明显,故利用纹理分析对其进行背景分析,而灰度共生矩阵是纹理分析方法中最常用的一种方法。文中采用灰度共生矩阵方法对该图像进行分割研究。
1 灰度共生矩阵
灰度共生矩阵(Gray Level Co-occurrence Ma-trix,GLCM)是图像纹理分析方法中的一种,它反映不同像素相对位置的空间信息,在一定程度上反映了纹理图像中各灰度级在空间上的分布特性,是纹理分析领域中最经常采用的特征之一。灰度共生矩阵是图像灰度变化的二阶统计度量,也是描述纹理结构性质特征的基本函数,它统计了两个像素点位置的联合概率分布。设S为目标区域R中具有特定空间联系的像素对的集合,则共生矩阵P可定义为
式(1)等号右边的分子是具有某种空间关系、灰度值分别为i,j的像素对的个数,分母为像素对的总和个数(#代表数量),这样得到的P是归一化的。
对于一幅图像Gf(i,j),大小N×N,包含像素(动态范围为G)的灰度级为{0,1,…,G-1},它的灰度共生矩阵是一个二维矩阵C(i,J),每个矩阵元素表示在某一距离d和角度θ强度i和j联合出现的概率。因此,根据不同的d和θ值,这里可能存在多个共生矩阵。但在实际应用中,往往适当的选取d,而θ一般取O°,45°,90°,135,如图1所示。
2 实验设计及分析
2.1 灰度共生矩阵的常用参量
实际应用中,作为图像纹理分析的特征量是由灰度共生矩阵计算出的一些参量。Haralick曾提出14种由灰度共生矩阵计算出的参量。但在本实验中主要用到的参量有以下4种:
(1)角二阶矩(Angular Second Moment,简记为ASM)。
角二阶矩是灰度共生矩阵元素值的平方和,所以也称能量,反映了图像灰度分布均匀程度和纹理粗细度。如果共生矩阵的所有值均相等,则ASM值小;相反,如果其中一些值大而其它值小,则ASM值大。当共生矩阵中元素集中分布时,ASM值大。ASM值大表明一种较均一和规则变化的纹理模式;
(2)对比度(Contrast,简记为CON)。
对比度反映了图像的清晰度和纹理沟纹深浅的程度。纹理沟纹越深,其对比度越大,视觉效果越清晰;反之,对比度小,则沟纹浅,效果模糊。灰度差即对比度大的像素对越多,这个值越大。灰度公生矩阵中远离对角线的元素值越大,CON越大;