3.1 信号预处理电路
电压预处理电路由电压转换电路和过零比较器组成。实验发现,采用隔离变压器进行电压信号转换会造成相位偏移,且相位偏移不够稳定。因此,电压转换电路采用光电隔离器构成,由于发光管发光具有一定的滞后特性,因此由光电隔离器构成的电压转换电路除具有无相位偏移的特点外,还具有很高的过零点检测的稳定性和可靠性。
电流预处理电路由低通滤波器和过零比较器组成。电力系统中通常有电力设备开关和控制造成的突发脉冲、高次谐波和噪声等因素的干扰,这些干扰频率通常高于工频,且主要体现在电流中。为了滤除或降低干扰,在电流预处理电路中设置由U21构成的二阶Butterworth低通滤波器。其传递函数为:
式中,ωo为电路固有角频率,即低通滤波器的截止频率;ζ为电路阻尼系数。
当R21=R22=R,C11=C21=C时,为电路最佳阻尼系数,此时,低通滤波器的截止频率为:
电流门限检测电路由VD31和C31构成的半桥滤波器和比较器U31构成,只有当电流达到一定值时,比较器输出为高电平。单片机通过检测到P3.7引脚的状态为1,才开始功率因数检测。图3中U13和U22分别构成两个过零比较器,由于比较器采用单5 V供电,满足TTL电平要求。过零比较器输出端的是与输入信号频率相同的方波。
3.2 相位检测电路
由于电力系统中电压与电流的相位差大于-90°,且小于90°。因此,可直接对电压信号预处理输出的方波信号和电流信号预处理的方波信号进行异或运算。得到一串脉宽与相位成正比的脉冲波。
3.3 显示及单片机小系统电路
为实现高精度相位检测和显示,采用具有SoftICE和ISP功能的高集成度增强型P89V51RD2单片机。其电路原理图如图4所示。显示电路由七段码集成电路74LS47、3-8译码器74LS138和6位共阳极七段码组成。其中:1位(D31)显示±,1位(D32)显示0或1和小数点,其余4位(D33)显示小数点后的4位有效数据。
单片机小系统除振荡电路和复位电路外。还有RS-232通信接口,这是因为P89V51RD2单片机具有SoftICE功能和ISP功能。
通过FlashMagic软件可激活P89V51RD2的SoftICE功能,则该单片机就具有本系统的自调试功能。通过串口通信电缆将本系统硬件连接到PC,在Vision单片机软件集成开发环境中进行程序在线调试。当系统程序调试完成后,可通过FlashMagic软件将调试通过的程序下载到单片机中,然后,按复位按钮或重新上电,系统正常工作。因此,采用P89V51RD2单片机设计时,无需仿真器和编程器就可完成整个系统设计。
4 系统软件设计
硬件电路为检测相位角提供高精度脉冲信号。利用P89V51RD2内部的T1定时/计数器,可精确求出△t值。将定时器T1设置成定时器方式,工作在工作方式1状态(即16位计数器)。
选用24 MHz的晶体振荡器,因此,时标脉冲周期为0.5μs。设定TR1和GATE1=1,则T1是否计数取决于信号:当由0→1时,T1开始计数;当由1→0时,T1停止计数。
设定IE=81H,IT0=1,当由1→0时,触发中断,在中断程序中,首先,关总中断,置TR1=0停止计数,读取定时器1的16位计数值,其中:高8位在TH1中,低8位在TL1中;然后,置定时器1的16位计数值为O;最后,开总中断,置TR1=1定时器1准备计数。因此,只要将△t信号施加至和上,就可求出以μs为单位△t的数值,即:
采用这种方法测量△t,分辨力和最大绝对误差均为0.5μs。系统软件程序流程如图5所示。电流信号预处理电路具有一定时间延迟,虽然其在被测相位上造成误差,但由于延迟时间固定,因此,只需由单片机读出相位值放入内存,采用软件修正测量结果,就可消除由此造成的通道相位误差,提高相位差的测量精度。