仿真过程NAM动态显示截图如图3所示,在R1(图3中的2号节点)处产生了大量丢包。
以下是该仿真实例产生的输出trace文件的部分内容:
对于其格式的含义,从第1列到第12列分别解释如下:第1列表示特定的跟踪对象实现的跟踪类型,有+(进队列)、一(出队列)、r(接收)、d(丢弃)4种;第2列表示事件发生的时间(单位:秒);第3列、第4列分别表示跟踪的源和目的节点号(对应于图3中的结点);第5列表示包类型名字;第6列表示包大小;第7列是一个标志字符串,本例没有使用;第8列是Ipv6定义的流标识符;第9,10列表示包的源和目的节点地址;第ll列表示流内的顺序号;第12列表示一次仿真中每个新生成包的惟一标识号。以上数据组记录了大小为407 B(435中包含28 B的分组头)分组传输的整个过程,再通过MyUDPSink代理生成目标trace记录<0.275093,id 8,udp,407>。
利用mother_daughter.264文件和目标trace文件,编写分析程序,从mother_daughter.264中将由于丢包和超时所丢失的分组去掉,得到新的视频压缩文件,解码后可以从主观和客观上去评价视频质量。
图4中的PSNR2和PSNRl分别展示了CBR有无背景流存在的2种条件下视频序列的PSNR的对比情况,说明CBR流的存在使视频质量恶化。图5从主观的角度,对比了两种情况下的视频质量,通过这一简单实验可以证明,本文所提出的方案是完全可行的。
4 结 语
本文选取NS一2网络模拟器作为仿真环境,设计和实现一个视频QoS分析的试验平台,对全部实现过程分析后,通过实例证明了提出的方案完全可行。对于网络视频QoS的研究者,可以应用文中给出的实验平台,分析和验证其提出的视频传输策略的有效性。