首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 单元电路介绍 > 其它电路
神经网络预测编码器的设计及应用
来源:本站整理  作者:佚名  2009-06-18 09:59:22



1 BP网络结构及其算法
    反向传播算法又称误差后向传播算法(Error Back Propagation Algorithm),它是用来训练多层前馈网络的一种学习算法。是一种有监督的学习算法。通常称用误差反向传播算法训练的网络叫BP网络。如图1所示,该BP网络具有一个输入层,两个隐含层(也称中间层)和一个输出层组成,各层之间实行全连接。BP神经网络的隐含层通常具有多个,其传输函数常常采用sigmoid函数,而输入输出层则采用线性传输函数。

误差反向传播算法的主要思想是把学习过程分为两个阶段:第一阶段(正向传播过程),给出输入信息通过输入层经隐含层逐层处理并计算每个单元的实际输出值;第二阶段(反向传播过程),若在输出层未能得到期望的输出值,则逐层递归地计算实际输出与期望输出之差值(即误差),以便根据此误差调节权值。误差反向传播算法的性能函数是均方误差。其算法流程如图2所示。

2 神经网络预测编码器的设计及应用
2.1 预测器层数
    kolmogorov定理(即映射网络存在定理),一个隐含层的网络,如果隐含层的功能函数是连续函数,则网络输出可以逼近一个连续函数。具体的说,设网络有p个输入,q个输出,则其作用可以看作是由p维欧式空间到q维欧式空间的一个非线性映射。
    Kolmogorov定理表明含一个隐含层的BP前馈网络是一种通用的函数逼近器,为逼近一个连续函数,一个隐含层是足够的。当要学习不连续函数时,则需要两个隐含层,即隐含层数最多两层即可,Lippmann等也给出了同样的结论。通过参考以上定理、规则,并结合试验最终确定本文实现的神经网络预测器采用两个隐含层,一个输入层和一个输出层的BP网络。
2.2 节点数
    网络的输入与输出节点数是由实际问题的本质决定的,与网络性能无关。而当像素间距离超过5时,像素之间的相关性就很小,并且在图像的某一个区域内,色度信息不会突变,因此,本文设计的BP神经网络预测器利用与当前像素相邻的9个像素来预测当前像素,这样不仅可以利用同一色分量内像素之间的相关性,也可以利用不同色通道之间像素的相关性进行预测。邻域像素的选择如图3所示。

[1] [2] [3]  下一页

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:175,953.10000 毫秒