2.3 系统实施的必要性和可行性分析
该系统的主要目的是设计一个可以对数据进行自动加密的USB2.0 接口芯片,常规的USB 接口芯片是不带加密功能的。而现今USB 的应用领域中有很大一部分需要对所传输的数据进 行加密。对安全性要求特别高,所以制作一个既符合USB2.0 规范,又可对数据进行自动加密 处理的专用集成电路在应用上将会有很大的应用空间.制作这样的集成电路很有必要.
FPGA 是一种可重构硬件,它既具有硬件的安全性和高速性又有软件的灵活性和易维护性,已经成为分组密码算法硬件实现的热点研究方向;另外FPGA 研发的启动开销比ASIC 要小,FPGA 从设计到投入市场的周期很短,FPGA 芯片重配置和扩充十分方便,它能够商定 所需的密码算法,更换的密码算法可以适时配置到目标设备中。当前,FPGA 芯片的容量不 断的增大,片内还有内嵌存储器,这就使查找表和变换操作可以很容易的实现,因此在百万 门的FPGA 中实现本文所提系统是可行的。
3 系统优势分析
提高USB 数据通讯可靠性的措施基本上可以分为两种:一种经过计算机软件处理,对数 据进行加密;另一种方法是在硬件的层面上对数据直接加密。其中软件处理实现起来较简单, 但软件加密处理速度比硬件加密慢许多,如果需要对大量数据进行实时加密,软件处理将会 消耗太多的时间,不适合数据的实时加密和通讯。相反,用硬件的方法来解决,在速度方面 将获得较理想的实时加密通讯的效果。
另外,由于加密算法中都大量使用了复杂的按位运算,而通常这类运算不适合在通用处 理器上运行,因此用软件来实现必然会带来效率低下的问题,而加密芯片体系结构是针对加 密算法的结构特征专门设计的,采用了一些特殊的优化技术(如流水线和查找表等),可以 极大地提高数据的流量并减少密钥的生成时间;另外软件只能提供有限的物理安全,尤其在 密钥的存储方面。而用硬件实现加密算法及与之相关的密钥生成过程,并且封装到芯片中, 因为它们不易被外部攻击者读取或更改,会有较高的物理安全性。因此基于硬件的密码算法 就受到业界的普遍关注,可以完全胜任整个系统的安全保密工作。
由以上分析可知,该系统采用硬件处理加密和USB 通讯,可以在满足USB2.0 规范的数 据传输的基础上,极大地提高系统的安全性。
4 结论
综上所述, 通过研究对USB 通讯安全性的需求,开发一个具有数据实时自动加密的USB 设备控制器可以开创USB 安全通信的新领域,而且,现在市面上大多数器件的外围接口的都 支持USB,如果可以开发一块保密性高而又不影响原有USB 通讯高速率、简单易用的芯片将 会受到广大用户的青睐.