如果作用时间很短,虽然不会损坏器件,但是会增强器件中通常不起作用的衬底对其它 晶体管的影响,从而导致将每个作用脉冲检测为多个时钟脉冲。这种脉冲抖动对串行式转换 器影响很厉害,而对并行式转换器则差一些。因为读周期和写周期通常都取决于所施加的 第一 个脉冲,而后边的脉冲无关紧要。但是,如果在转换期间出现这种干扰信号,无论是串行还 是并行式转换器都要受到噪声的影响。
图109示出了如何很容易地减小过冲。在出现问
图109 用来减小过冲的低通滤波器
题的数字输入信号线上串联一个小电阻。这个电阻与数字输入端的寄生电容 C par 结合起来可构成一个低通滤波器,从而可 以消除接受信号的任何振荡。一般推荐使用50Ω的电阻,但是做一些实验可能是必要的。如 果数字输入端的内部电容不够大,还可在这个输入端加一个外接电容。这时实验是必要的, 但开始最好选10pF左右的电容。
问:你已经谈到时钟信号过冲会使转换器的噪声恶化。从接口技术的角度来看,是否有 其它方法来改善其信噪比?
答:因为你的系统在混合信号(模拟与数字)环境下工作,所以接地方法至关重要。你可 能知道,因为数字电路是一种噪声源,所以模拟地与数字地应该分开,只在一点会合。这种 接地方法通常只用在电源上。实际上,如果模拟器件和数字器件共用一个电源,例如+5V或+ 33V单电源系统,只有连接模拟地与数字地才能在电源返回,别无选择。具体数据转换器 的 产品说明可能指导你对器件的AGND脚和DGND脚如何连接。如果在两点接地,那么应该如何避 免产生接地环路呢?
图1010示出了解决这种困境的方法。关键在于数据转换器的引脚中标记的AGND和DGND 脚 都是相对转换器的部件而言的,用来与其它引脚连接。数据转换器作为一个整体,应该按模 拟器件来处 理。所以将AGND和DGND脚连接到一起后,应该用一根线接到系统的模拟地。如果真的这样做 ,会使转换器的数字电流流入模拟接地平面,但这样要比通常把转换器的DGND脚接到噪声数 字接地平面带来的危害要小。这个例子还示出了一个接数字地的数字缓冲器,用来使转换 器的串行数据引脚与有噪声的串行数据总线相隔离。如果数据转换器的引脚与微处理器的引 脚直接相连,那么可以不用这种缓冲器。
图1010还示出了如何处理混合信号系统单电源
供电这样一个越来越引人关注的普遍性问题。正如接
图1010 模拟地与数字地的接线方法
地一样,我们将电路中的模拟部分与数字部分的电源线(最好是电源平面)分开。我们将 数据转换器的数字电源按模拟电源处理。但是有时候将模拟电源引脚与数字电源引脚用一种 电感的方式隔离起来是很必要的。请注意,转换器的两个电源引脚都应分别接去耦电容器。 具 体产品说明将推荐选用合适的电容器,但好的经验规则是01μF。如果空间允许,每个器 件都应接一个10μF电容器。
问:我想在ADC与微处理器之间用光隔离器设计一个串行接口。当我使用这些器件时,应 该知道些什么?
答:为了构造一个简单而又经济的高压隔离器可以使用光隔离器(又称光耦合器)。在数 据转换器与微处理器之间电流隔离作用的经验还表明模拟系统的地与数字系统的地不必再连 接起来。正如图10.11所示,精密ADC AD7714 与通用的微控制68HC11之间的
隔离串行接口只用3个光隔离器便可实现。
图1011 ADC与微处理器之间的隔离串行接口
设计者应该知道,光隔离器的上升时间和下降时间非常慢。它与CMOS数据转换器一起使 用会出现问题,即使在串行通信时以低速运行也是如此。CMOS逻辑输入端设计成用规定的逻辑“0”或逻辑“1”来驱动。在这种状态下,输入端 提供和吸收很少量的电流。然而,当输入电压处于逻辑“0”与逻辑 “1”之间的变迁状态时(08V到20 V)逻辑门消耗的电流数量将要增加。如果所用的光隔离器的上升时间和下降时间相当慢,那 么绝大部分时间都浪费在“死区”,从而产生逻辑门的自热。这种自热导致逻辑 门的阈值电压向上漂移,从而导致转换器将一个时钟脉冲看作多个时钟脉冲。为 了防止这种阈值抖动,应该使用施密特触发器来缓冲来自光隔离器的信号线,以便将快速、 陡沿的时钟信号传送给数据转换器。