传统的综合技术越来越不能满足当今采用 90 纳米及以下工艺节点实现的非常大且复杂的 FPGA 设计的需求了。问题是传统的 FPGA 综合引擎是基于源自 ASIC 的方法,如底层规划、区域内优化 (IPO,In-place Optimization) 以及具有物理意识的综合 (physically-aware synthesis) 等。然而,这些从 ASIC 得来的综合算法并不适用于 FPGA 的常规架构和预定义的布线资源。
最终的结果是,所有的三种传统 FPGA 综合方法需要在前端综合与下游的布局布线工具之间进行多次耗时的设计反复,以获得时序收敛。这个问题的解决方案是一种基于图形的独特物理综合技术,能够提供一次通过、按钮操作的综合步骤,不需要 ( 或者需要很少 ) 与下游的布局布线引擎的设计反复。而且,基于图形的物理综合在总体的时钟速度方面可以将性能提高 5% 到 20% 。 Synplify Premier 先进 FPGA 物理综合工具就是这样一种工具,专门针对那些设计很复杂的高端 FPGA 设计工程师而定制,他们的设计需要真正的物理综合解决方案。
本文首先介绍了主要的传统综合方法,并说明这些方法存在的相关问题,然后介绍基于图形的物理综合概念,并指出这种技术如何满足当前先进 FPGA 的设计需求。
传统综合解决方案存在的问题
对于 2 微米的 ASIC 技术节点以及上世纪 80 年代早期以前来说,电路单元 ( 逻辑门 ) 相关的延时与互连 ( 连接线 ) 相关延时的比例约 80:20 ,也就是说门延时约占每个延时路径的 80% 。这样一来,设计师可以用连线负载模型来估计互连延时,在连线负载模型中,每个逻辑门输入被赋予某个 “ 单位负载 ” 值,与某个特定路径相关的延时可以作为驱动门电路的强度和连接线上的总电容性负载的函数来计算得出。
类似地,当在上世纪 80 年代后期 ( 大约引入 1 微米技术节点的时候 ) 第一个 RTL 综合工具开始用在 ASIC 设计中的时候,电路单元的延时与连线延时相比还是占主导地位,比例约为 66:34 。因此,早期的综合工具还是基于它们的延时估计方法,并使用简单的连线负载模型进行优化。由于电路单元的延时占据主导,因此初期综合引擎使用的基于连线负载的时序估计足够准确,下游的布局布线引擎通常能在相对较少的几次反复 ( 在 RTL 和综合阶段之间 ) 条件下实现设计。
然而,随着每个后续技术节点的引入,互连延时大大地增加 ( 事实上,就 2005 年采用 90 纳米技术实现的标准单元 ASIC 来说,电路单元与互连的延时比例现在已经接近 20:80) 。这使得综合引擎的延时估计与布局布线后实际延时的关联性越来越低。
这具有一些很重要的牵连性,因为综合引擎在不同的优化方法之间选择,以及在实现功能的替代方法 ( 诸如基于它们的时序预测的加法器 ) 之间选择。例如,假设某个包含一个加法器 ( 以及其它组件 ) 的特定时序路径被预知具有一些 ( 时序 ) 裕量,这种情况下,综合工具可以选择一个占用芯片面积相对较小的较慢加法器版本。但是,如果时序估计与实际的布局布线后延迟情况出入比较大的话,这个路径可能最后非常慢。这样一来,不准确的延时估计意味着综合引擎最后才对不正确的对象进行优化,只有在完成了布局布线后你才发现问题并不是像你 ( 或综合引擎 ) 所想的那样,其结果是获得时序收敛所需的工作量将大大地增加,因为从前端到后端的设计反复次数大大增加了。
为了解决这些问题,有必要了解在综合过程中与设计相关的物理特性。因此,随着时间的推移, ASIC 综合技术 ( 紧跟着 FPGA 综合技术 ) 采用了一系列的方法 ( 某些情况下也抛弃了一些方法 ) ,例如下面讨论的底层规划、 IPO 和具有物理意识的综合。