应当指出的是,电压电平移位器已经包含在输入级,目的是为了在线性区和超出输入信号范围到两端电压时,来驱动M3P和M3N,避免了M1P和M1N分别工作。因此,轨到轨操作在电路输出端一样,同样能在输入端达到。
所提出缓冲器的动态操作可以通过在电路输入支路AB类差分对的高的驱动能力来提高。一旦遇到大的正向输入信号,晶体管M2P截止,而M2N则吸收大量电流,通过M4N和M5N镜像到输出部分。相反,当大的输入信号以负的方向施加时,晶体管M2N截止,M2P传送大电流,通过M4P和MSP拷贝到输出部分。
所提出缓冲器的输入电容可以通过等比例减小晶体管M2P和M2N的尺寸。毫不疑问,必须指出的是,这些晶体管宽长比的减小会导致它们有效驱动能力的降低。除此之外,在这种电路里只有一个高阻抗的节点,它的带宽可能非常大。然而,在输出节点具有高输出阻抗的单增益级结构非常适合用来驱动大的电容负载,假定低电阻负载能减小缓冲器的整体增益。,因此,它是精确的。
图3 在图2中模拟缓冲器的直流传输特性
仿真结果:图2中的模拟电压缓冲器已经在0.35uCMOS工艺设计实现。工作电源电压是1.5V,偏置电流是10uA,负载电容是lOpF。
图3给出了具有失调电压的所提出的模拟缓冲器的DC传输特性。正如期待的那样,rail to rail特性达到了。图4给出了图2电路的大信号瞬态响应。特别指出的是,输出电压揭示了高的转换速率是由于在输入级的AB类操作。但是,最大电流与通过输出晶体管的静态偏置电流的大的比率证实了所提出的方法导致了低功耗和高的驱动能力。
对于DC输人电压等于零仿真,开环增益和单位增益频率大约为54dB和6.1MHz。增益值相对低是由于电路是单增益级。增益一带宽值的是以增加输入差分对的偏置电流为代价的。因此,增大了功耗。对于2.4VPP 100kHz输入正弦信号,可以得到-44.6dB的ATHD.当输入电阻没有按比例减小时,所提出缓冲器的仿真电容要降低32fF。
图4在图2中模拟缓冲器对于为2.4VPP频率为1MHZ方波输入信号10pF负载电容的大信号瞬态响应
a输入和输出电压 b通过输出晶体管的电流
结论:提出了减小输入电容的轨到轨电压缓冲器。轨到轨操作不仅在电路的输出端,同样在电路的输入端实现。所介绍电路的AB特性导致了低功耗和高的转换速率,使它很适合驱动大的电容负载。仿真结果已经提供了该电路的操作。
本文作者创新点:提出了减小输人电容的轨到轨电压缓冲器。轨到轨操作不仅在电路的输出端.同样在电路的输入端实现。所介绍电路的AB特性导致了低功耗和高的转换速率,使它很适合驱动大的电容负载。仿真结果已经提供了该电路的操作。