首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 单元电路介绍 > 其它电路
用于低压系统的模拟IC
来源:本站整理  作者:佚名  2010-05-07 17:18:03





基于电感的开关调节器

开关调节器提供单路或多路输出,可以采用脉冲频率调制(PFM)、脉冲宽度调制(PWM),也可以同时采用这两种工作模式,具体取决于对输出功率的要求。PFM控制机制在轻载下可以获得较高效率,静态电流可低至10µA。PWM架构功耗较大,但其固定频率工作方式有助于降低噪声和EMI。有些转换器可以根据控制信号或负载电流的大小在这两种控制方式之间切换工作模式。

LDO在较低压差(VIN - VOUT)应用场合能够获得较高效率,但在多数应用中,输入电压明显高于输出电压。这种情况下,需要使用降压型开关调节器。收音机、手机等RF应用中,可以选择开关电源,但须注意避免在敏感的IF频段引入干扰噪声。

对于RF应用,一个理想的选择是MAX1684开关调节器。这款器件能够从4V至12V输入产生3.3V、1A输出,效率可达97%。内置300kHz振荡器和MOSFET,简单易用。

为了满足低电压、低功耗IC的需求,可以选择高效的buck调节器升级现有的逻辑板。这些电路板通常提供3.3V电源,但需要1.8V电源为新的低压逻辑电路供电。利用线性稳压器可以方便地把3.3V电压转换成1.8V,但当负载电流较大时会消耗较大功率,这在许多应用中是无法接受的。例如,需要2A输出电流时,线性稳压器的功耗将达到3W,需要加装散热片。此时,MAX1830高效率开关电源(图3)能够以大于90%的效率提供20mA至2A的输出电流,无需外部MOSFET,也不需要散热片。

图3. MAX1830开关调节器以高于90%的效率将3.3V电源转换成1.8V,输出电流范围为20mA至2A,无需外部MOSFET。
图3. MAX1830开关调节器以高于90%的效率将3.3V电源转换成1.8V,输出电流范围为20mA至2A,无需外部MOSFET。

MAX1830采用微小的16引脚QSOP封装,输入电压范围为3V至5.5V。其静态工作电流为325µA,待机模式下只有0.2µA。较高的开关频率(高达1MHz)允许外部使用小尺寸、低成本的表贴元件。

多输出开关调节器用于多电源供电系统,例如,在笔记本电脑中产生VCC,可以使用MAX1999,能够产生四路稳压输出(图4)。

图4. MAX1999开关调节器产生四路输出电压,其中包括两路高效率的大功率开关调节器和两个低功率LDO。它还包含电源就绪输出、关断控制、限流以及引脚可编程的上电顺序等功能。
图4. MAX1999开关调节器产生四路输出电压,其中包括两路高效率的大功率开关调节器和两个低功率LDO。它还包含电源就绪输出、关断控制、限流以及引脚可编程的上电顺序等功能。

数据转换器

A/D转换器

在便携设备中,低功耗对于A/D转换器(ADC)来说非常重要。这些应用通常要求高速转换,而高速与低功耗在系统设计中是相互矛盾的两个因素。针对这类需求,Maxim开发了一系列能够在采样期间保持合理的电流损耗,而在关断期间具有极低电流损耗的ADC。从而使转换器不必连续工作,节省系统功耗。

例如,MAX1115能够每秒钟转换100k次采样。工作在+3V时仅消耗175µA电流;自动关断模式下仅消耗1µA电流。这样,MAX1115能够在间断性采样的应用中节省大量功耗(图5)。

图5. 通过在两次数据转换之间进入1µA低功耗关断模式,MAX1115 8位ADC能够大大降低电源电流。
图5. 通过在两次数据转换之间进入1µA低功耗关断模式,MAX1115 8位ADC能够大大降低电源电流。

手机中的信号强度测量(RSSI:接收信号强度测量)是这类应用的一个典型案例,MAX1115以2ksps的速率量化信号,仅从3V电源消耗2µA电流。整体系统误差(失调、积分非线性、增益误差之和)小于1 LSB,SINAD (信号与噪声 + 失真比)低于48dB。

D/A转换器

新型D/A转换器(DAC)使得低压数字系统能够产生模拟输出。便携应用中,要求这些IC具有极低功耗并占用极小的电路板空间。例如,低成本的MAX5811即为一个10位、电压输出的DAC,工作电流只有170µA,关断模式下电流低至1µA,非常适合便携式应用。串行数据控制允许其集成到SOT23封装内。

MAX5811采用2.7V单电源供电,提供满摆幅输出。非常适合失调电压调整、设置偏置点调节电流(或电压)等低成本应用,也可以在其它电路中设置稳压输出。

运算放大器和电流监测器

运算放大器中,降低供电电压会减小输出电压摆幅,进而降低信噪比(SNR)。考虑到这一因素,很多低压运放为了保持较高的SNR,通常需要提供满摆幅输出。同样,许多运放还具有满摆幅输入电压范围(可以达到单电源或双电源摆幅)。

低压工作不仅降低了信号范围,噪底的提升也使SNR指标更加受限。低压放大器设计要求消耗极低的电流,这会造成更大的放大器噪声。此外,由于使用大阻值反馈电阻(限制系统的电源电流),也会增大噪声。

在更加复杂的情况下,高阻抗节点很容易通过耦合电容从高速数字信号拾取噪声。因此,高阻引线应尽可能短,并使其远离高速数字信号线。

值得注意的是,低压运放存在一些相互排斥的特性,包括低电源电流、低失调电压和高速。例如,MAX4236A +3V供电系列产品具有1.7MHz的增益带宽积、20µV的失调电压和350µA的电源电流。输入共模电压范围可以达到负压,且满摆幅输出。这些特性使MAX4236A系列运算放大器非常适合在低压、电池供电产品中用作仪表放大器。

Maxim的运算放大器产品线还提供双向、高边电流检测放大器,例如:工作电压为+2.7V的MAX4069系列(图6)。这些电流检测放大器采用高边检流电阻,从而避免了接地问题,芯片采用8/10引脚µMAX®封装。

图6. MAX4070双向检流放大器构成完备的电流至电压转换器
图6. MAX4070双向检流放大器构成完备的电流至电压转换器

便携产品设计中需要节约每一微安的电流,一些低电压微功耗运算放大器能够显著降低电源电流。+1.4V供电的MAX4036/MAX4038和+1.8V供电的MAX4474运算放大器具有1.2µA (最大值)的极低功耗。提供满摆幅输出,输入范围可扩展至负压。

当运算放大器工作在低压电源时,输入共模电压范围和输出电压摆幅受到极大制约。设计低压电路时必需注意这些输入和输出限制,表3列出了以上讨论运算放大器的一些数据。

上一页  [1] [2] [3] [4] 

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)
Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:137,781.30000 毫秒