在D类音频放大器的运放电路设计中,信号的低谐波失真(Total HarmonIC distortion)和噪声对运放的设计形成挑战。对于20~20KHz范围的音频信号而言,运放的失真主要是由电压失调和低频1/f噪声引起的。而CMOS工艺相对较高的1/f噪声和电压失调,使得这一问题尤为严重。当要求电路的失调电压低于1mV且输入等效噪声低于100nV/Hz时。普通的CMOS运放很难满足需求。而常见的静态失调消零技术,如trimming修调,虽然能很好地消除电压失调的影响,但是却不能降低1/f噪声。解决这个问题的最好方法就是采用动态消零技术(dynamic offset—CANcellation techniques),如自动稳零和斩波技术。自动稳零技术(Auto zero tiechnique)是通过对低频噪声和失调进行采样,然后在运算放大器的输入或输出端将它们从信号的瞬间值中减去,实现对失调和噪声的降低。由于自动稳零技术使用的是电容采样的原理,因此在电路工作中极易将宽带热噪声折叠到基带频率内,并且运放的带宽越宽,采样电容上的噪声也越多,通常高达70nV/Hz。斩波技术(Chopper Technique)是采用调制和解调原理,将低频噪声和失调搬移到高频部分,使用低通滤波滤除,由于没有热噪声的混叠,因此运放的噪声电压比自动稳零技术的更低。但是斩波开关电荷注入和电荷馈通效应的影响,仍然可以产生100uV左右的残余电压失调(residual offset)。而且斩波开关的使用,器件的热噪声电平将会有所增加。
为此,本文在0.35微米N阱工艺的基础上,设计了单电源供电的全差分斩波运放电路,同时,为了减小残余电压的失调, 采用了T/H(跟踪-保持)解调技术,该电路在斩波频率150KHz工作时,输入等效噪声达到31.12nV/Hz。
2 斩波运放的工作原理
斩波运放的原理如图1所示,其中Vin是输入音频信号,被频率为fch,幅度为1的斩波开关调制,根据奈奎斯特采样原理,为了避免信输入信号的混叠,fch必须远大于2倍的信号带宽。
图1 斩波运放的原理
经过调制后,信号的被搬移到斩波方波的奇次谐波频率上。此信号被增益为Av的运算放大器放大,同时运放的输入噪声和输入失调电压也被运放放大,运放的输出经过幅度为1,频率为fch的斩波开关调制后,输出信号为:
从式(1)可以看出,经过第2次斩波后,输入音频信号被解调到低频段,而运放的电压失调和低频噪声只经过一次调制后被搬移到斩波方波的高频奇次谐波上,通过低通滤波后,输出信号中的高频分量被滤除,低频分量还原为音频信号,从而实现了对音频信号的精确放大。
对输出信号进行傅立叶分析,得到运放的最终输入噪声谱密度(PSD)为:
其中系数K与工艺的噪声参数有关。