FIFO控制电路设计
实际电路设计不考虑读写时钟的频率和相位的异同,读写时钟域的电路基于同步电路设计的理念来进行设计,在设计过程中,满足读时钟频率不低于写时钟频率即可。在图4中给出了FIFO控制电路的流程图,下面将对低速传输和高速传输进行详细介绍。
低速采集数据传输过程
在图5给出了低速采集时传输周期时序仿真时序图,在低速采集时,写时钟频率小于读时钟,每次触发长度为FIFO长度的一半。采集结束即剩余数据传输的长度不到FIFO的一半。根据prog_full的设置,在prog_full有效,同时采集门控信号有效时启动触发请求,由于prog_full为写时钟域信号,必须要经过rd_clk同步,源代码如下:
process(rd_clk,acq_start_rst)
begin
if acq_start_rst='1'then
prog_full_dly<='0';
prog_full_dly1<='0';
elsif rd_clk'event and rd_clk='1'
then
if acq_gate= '1' then
prog_full_dly<=prog_full;
prog_full_dly1<=prog_
full_dly;
else
prog_full_dly<='0';
prog_full_dly1<='0';
end if;
end if;
end process;
当FIFO半满时触发读请求有效,acq_frame_l为低电平,启动采集数据传输请求,地址和数据同时有效,sdram控制器给出应答信号acq_trdy_l,长度由FIFO读写控制电路决定,触发一次的长度为32,即FIFO半满的长度,传输完毕,给出传输结束标志信号acq_blast,一次传输周期结束。采集门控信号结束后,FIFO剩余数据长度不足32,这时候启动门控结束传递进程,触发结束标志由almost_empty决定,当alomost_empty有效时,停止触发。
高速采集数据传输过程
在高速采集时,读时钟频率等于写时钟频率,当启动触发传输时,触发传输长度为门控信号长度,直到将FIFO内部数据传输完毕,触发结束标志由almost_empty决定,当alomost_empty有效时,停止触发传输,触发传输过程如图6所示。
结语
采用高速异步FIFO作为数据采集缓存,应用范围十分广泛。特别是在高速数据采集系统中,在外接存储器时,采集数据首先要经过缓存才能存入外部存储器,采用FPGA自生成FIFO就能够满足要求。本方案充分利用FIFO的特点,通过控制电路优化设计,解决了读写时钟的异同问题,提高了电路的工作效率。