图2:使用LabVIEW声音与振动工具包将原始数据换算为合适的工程单位。
为了得到信号的精确换算,需要对系统进行标定。在被测数值与标准数值之间存在已知关系时,可以进行标定。在音频测量系统中,标定过程需要一个已知数值的外部声音源,它通常来自活塞发声器或声学标定器。SVT提供了标定VI,它能够确保整个测量系统的精度。
加权滤波器
测量硬件通常被设计为在音频带宽中具有线性响应。另一方面,人耳具有非线性性响应。因为在许多情况下,最终的传感器是人耳,我们需要对测量按照人耳 模型进行补偿。使用加权滤波器是描述声音主观感知的最佳标准方法。加权滤波器通常使用模拟组件进行构建,不过,SVT提供了时域数据与频域数据的数字加权 滤波器。图3是使用加权滤波器的VI,它和NI硬件结合在一起,符合美国国家标准学会(ANSI)的标准。
图3:将加权滤波器应用于SVT的换算数据。
使用LabVIEW进行音频测量
在完成音频信号的采集、换算与加权之后,我们现在可以利用计算机的处理能力完成复杂的信号分析。本小节描述了行业中所使用的常见音频测量。在简单的 说明之后,我们将给出演示如何使用SVT进行这些测量的实例代码。第一部分涵盖了仅仅使用LabVIEW就能够完成的标准测量;第二部分演示了借助SVT 如何使用简单的LabVIEW代码进行高级音频测量。
单频信息
音频测量中的多种标准方法需要利用单音频信号进行激励和分析。LabVIEW提供了从信号中提取关于一定音频的重要信息的高级VI。Extract Single Tone Information.vi可以找出信号中幅值最大的频率成分,并且计算其幅值、频率和相位。这个VI还提供了导出所提取的音频或去除此音频后的原始信 号的选项。此VI还可以在某个频带内进行更细分的搜索,以获取更准确的结果。如图4所示,为Extract Single Tone Information.vi 对带有噪声的正弦波信号进行分析的结果。这个范例仅限于对单通道信息进行分析,但只要稍加修改,即可实现对多个通道信号的同步分析。
图4:提取信号中单音频的频率、幅值和相位。
RMS
对于一些应用而言,信号幅值并不能提供足够信息。在例如需要计算增益与功率、信号均方根值等许多测量中,LabVIEW提供了可以通过对瞬间信号数 据取平方、对给定时间进行积分、计算开根号结果功能方便地计算均方根数值。Basic Averages DC-RMS.vi还能够对对信号计算得到的均方根数值取平均值。这个VI还包含了时间窗选项,可以得到更好的测量结果。图5展示了如何使用 LabVIEW使用汉宁窗计算线性平均直流与均方根数值。
图5:获得采集信号的平均均方根数值。