1 引言
随着电子技术和计算机技术的迅猛发展,国内开展先进飞机配电系统研究的技术手段已比国外八十年代好得多, 对固态功控系统研究,就是基于目前飞机配电系统的发展应运而生的,目前市场上的均为单开关结构,最近多开关的SSPC组已经处于研发之中,SSPC组共享大规模控制芯片,可进一步提高功率密度和扩展功能。现在国外对进行研究的公司有美国的印和立奇等,国内对的研究处于工程样机阶段。
2 系统总体结构框图
如图1所示,每路SSPC取样电阻上的电压经过调理电路和低通滤波器以后,送到4通道A/D转换器的一个模拟输入端,A/D转换器的数据输出端、状态信号和控制信号分别接到CPLD的I/O引脚,便于程序控制A/D转换器的动作。CPLD另外的I/O口可以配置为MOSFET的开关命令输出口线、SSPC的状态输出口线和与上位机相连的控制命令输入口线;CPLD自身提供的JTAG BST电路,可以方便的测试系统内部器件之间的连接和检验器件的操作。
图1 系统结构框图
3 硬件设计
3.1 逻辑控制器件
根据设计要求,需要集成多个SSPC在一块电路板上,如果完全用分离元件来实现,数字电路的体积相当庞大,因此我们采用复杂可编程逻辑器件-CPLD。ALTERA公司的可编程逻辑器件在工业界是最快和最大的,该公司的PLD器件不仅具有PLD的一般优点,而且还有如下一些优势:高性能、高集成度、价格合理、开发周期较短和利于编程。
根据软件所需要的资源,逻辑主控芯片采用ALTERA公司的MAX3000A系列芯片中的EPM3256ATC144-10,相对于MAX7000系列,MAX3000A系列的I/O电压为+3.3V,而MAX7000系列的I/O电压为+5V,一般来说,对于控制信号的输出,+5V电压可靠性高些,但是低电压、低功耗是以后的发展趋势,并且也利于以后的换代产品的设计,而对于可靠性的考虑可以通过加强外围电路的设计来达到系统设计的要求。
3.2 电力MOSFET的驱动电路
控制命令经过光耦隔离输出后,接到比较器LM311的正相输入端,比较器的反相输入端输入的是参考电平Vref,取 Vref=3V。当DRV_SSPC1=1时,光耦输出高电平,比较器正相输入端电压大于反相输入端电压,比较器输出DRC_OUT为高电平:当 DRV_SSPC1=0时,光耦输出低电平,比较器正相输入端电压小于反相输入端电压,比较器输出DRC_OUT为低电平;比较器的输出端接低值电阻 R30,目的是与电力MOSFET的G极和D极间寄生电容构成一定时间的阻容延时,保证MOS管的导通时间不至于太快或太慢,减小寄生振荡,该电阻值应随被驱动器件额定电流值的增大而减小。
图2 驱动电路
3.3 信号采集电路
1、模拟量采集电路。信号采样!调理的方块图如图3所示。模拟信号经过隔离电路,得到取样电压,经过一定比例的放大,通过跟随器进行阻抗匹配,最后经过滤波处理,滤去信号中的交流分量,得到的信号就可以送到A/D转换器的模拟输入端。
图3 模拟信号调理采集电路