性能和功耗
与传统数据处理方法不同, DSP 采用了高度流水线化的并行操作。而 FPGA 结构则可以做得更好,达到更高的性能。FPGA具有成千上万的查找表和触发器,因此FPGA平台可以更低的成本达到比通用DSP更快的速度。例如,目前的两百万门FPGA可达到每秒1280亿MAC的性能,比目前最快的DSP性能还要高一个量级。
对多DSP处理器解决方案,需要较大的功率才能驱动连接多个处理器的板级连接(具有较大的容抗)。与此相对比,FPGA可创建具有定制数据通道的处理器,数据以最小的负载从一个并行操作传送到下一个操作,并且没有取指令的额外开销。这种结构使得在较低的时钟频率下可达到较高的性能。而功耗直接正比于电路的频率,因此运行于较低时钟频率下并行处理的FPGA方案可大大减小功耗。
设计及实施
虽然FPGA的“可编程”特性带来明显的灵活性优势,但也需要设计编程技巧。FPGA制造商不断改进这一流程,开发专门的软件,与第三方软件供应商建立伙伴关系,从而简化编程过程,并提供最大的灵活性。
FPGA核心与系统级模型工具的集成为设计人员提供了创建低功耗、高性能便携式DSP应用的简明方法。实际上,目前的便携式系统设计人员可以采用自动化的设计工具来完成系统设计和FPGA实施。采用与系统框图类似的图形化方法,软件可自动将模块转换成相应的FPGA DSP核心。
为简化FPGA设计流程,设计新手和有经验的设计人员可以利用像Xilinx最近推出的系统生成器这样的工具,直接连接使用The Mathworks, Inc. (NatICk, MA)的MATLAB和Simulink系统工具。设计人员采用这一解决方案可以快速建立和验证一个DSP系统。软件自动生成HDL表示,然后再映射成Xilinx LogiCCORE构建模块。设计人员利用它来优化设计、并在高性能和低芯片成本之间进行平衡。
采用这一设计方法时,设计人员可以系统模块方式定义DSP算法,并验证算法数学上是否正确,然后利用位真值模拟方法来实施定点测试。在流程中的每一步,位宽度都可以优化以与系统要求相匹配。然后,利用核心生成器实施系统级工具所指定的设计。
应用举例
由于FPGA的性能和灵活性,以及新的简明的设计和实施方法,在很多新兴DSP应用领域,如数字通信和视频处理,FPGA都成为优选的解决方案。例如,Xilinx Virtex 和 Spartan -II FPGA可以用来实现通用移动通信系统(UMTS)码分多址(CDMA)应用中的匹配滤波器。UMTS标准的芯片速率有8.192MHz和15.36MHz两种选择。通过FPGA解决方案,在未来不需要额外的资源就可以改变数据速率。
在CDMA无线通信系统中,所有移动手机和所有无线基站都工作在相同的频谱。为区分不同的呼叫,每个手机广播一个唯一的码序列。CDMA基站必须能够判别这些不同的码序列才能够分辨出不同的传输呼叫进程。这一判别是通过匹配滤波器实现的,匹配滤波器的输出显示出在输入数据流中探测到特定的码序列。
在CDMA数字通信接收器中,匹配滤波器作为信号处理器来计算发送信号与接收信号的相关性。FPGA都能提供良好的滤波器设计,而且能完成DSP的高级数据处理功能。
结论
充分发挥FPGA DSP核心所具有的优点,便携式系统设计人员可大大缩短设计周期。采用FPGA技术,还可以获得高性能,满足成本要求,并享有快速有效地对新设计进行优化的灵活性。