2.2 输入阻抗匹配方案选择
方案一:采用低噪声精准放大器OP27 设计前级的射级跟随,尽管噪声小、精度高,但是由于带宽仅为8 MHz,达不到10 MHz 的要求; 方案二: 采用高速宽带运放OPA692 作为构成前级的射级跟随器。OPA692 是高速宽带运放, 其在±5 V 双电源工作时,增益为2,频带宽度为190 MHz,电压转换速率为2 100 V/μs。
经过比较, 采用方案二。由于AD603 的输入阻抗只有100 Ω, 使用OPA692 作为前级输入完全能满足要求,并且可以很好地隔绝前级电路对后级电路的干扰, 实现级间的阻抗匹配。
2.3 滤波电路选择方案
方案一: 采用RC 滤波电路, 但RC 滤波衰减很大;方案二: 利用高速宽带运放OPA690 设计二阶巴特沃思滤波器, 其通频带内的频率响应曲线最大限度平坦, 没有起伏, 而在阻频带则逐渐下降为零。经比较, 选择方案二。
3 理论分析与参数计算
3.1 电压增益控制原理分析
电压增益控制原理分析AD603 的基本增益为:Gain =40 VG+10, 其中,VG是差分输入电压, 单位是V,Gain 是AD603 的基本增益,单位是dB 。从此式可以看出, 以dB 作单位对数增益和电压之间是线性关系, 因此, 只要单片机进行简单的线性计算就可以控制对数增益, 增益步进可以很准确地实现。
3.2 通频带内增益起伏控制分析
为控制通频带内增益起伏, 采用二阶巴特沃思滤波环节, 其电阻电容可根据式(1) 、式(2)计算:
其中f0为通带截止频率,Q 为f=f0时电压放大倍数与通带放大倍数数值之比。计算数据可仿真实现。
3.3 抑制直流零点漂移分析
在集成运放同相输入端和反相输入端外接总电阻相同的情况下, 可抑制零点漂移, 另外在实际调试中, 还应加入调零端, 可有效地调整零位。
3.4 放大器稳定性分析
在各级放大电路中, 设计中均采用了电压负反馈,保证了放大器运行稳定。
4 主要功能模块设计
4.1 可编程增益放大器
AD603 是一款低噪声、精密控制的可变增益放大器, 温度稳定性高, 最大增益误差为0.5 dB, 其增益(dB)与控制电压(V) 成线性关系, 因此可以很方便地使用D/A 输出电压控制放大器的增益, 并且其输入电流很小,致使片内控制电路对提供增益控制电压的外电路影响减小, 很适合构成程控增益放大器。可编程增益放大器AD603 由无源输入衰减器、增益控制界面和固定增益放大器三部分组成。带宽90 MHz 时增益变化范围为-11 dB~+3l dB; 带宽为9 MHz 时为9 dB~51 dB。增益变化范围可分三种模式进行控制: 当5 脚与7 脚断开时,增益变化范围为9 dB~51 dB, 当5 脚与7 脚短接时, 增益变化范应为-11 dB~+3l dB, 当5 脚与7 脚之间接一电阻时, 可使增益变化范围进行平移。为了增大控制范围,设计中采取了两级AD603 级联的方法,如图2 所示。
图2 可编程增益放大器