传感器 和阻性检测元件
许多传感器的输出与其电源电压都是成比例的。这通常是因为产生输出的感应元件是比率器件。最常见的比率元件是电阻器,其阻值随被测量的变化而变化。电阻式温度检测器(RTD)和应变计都是典型的阻性敏感元件。
阻性元件的比率性是由于其阻抗不能直接测量。其值是由电阻两端的电压与经过电阻的电流的比值确定的。
R = V/I 公式1 (欧姆定理)
使用阻性元件的传感器通常令一个电流流过电阻并测量其电压。在输出传感器之前,可以将该电压进行放大或电平偏移,但是其大小仍然与流过电阻的电流相关。如果该电流来自于电源电压,那么传感器的输出与电源电压成比例。公式2描述了这类比例传感器的输出(图1),其中Vs是输出信号,Ve是激励电压,S是传感器的灵敏度,P是所测参数的量值,C是传感器的失调量。
Vs = Ve (P x S + C) 公式2
图1. 比例型传感器
Honeywell™[1] MLxxx-C系列压力传感器是众多汽车比例传感器中具有代表性的器件。当在5V标称电源电压下工作时,失调电压为0.5V,满量程输出为4.5V。如
需要知道激励电压才可使用输出信号,这在许多应用中是很不方便的。为了解决这一问题,制造商在电路上增加了一个电压基准。这种器件可提供非常精确的电压,并与温度和电源电压无关。如果流经感应电阻的电流来自于基准电压,那么公式2中的Ve可用一个常数替换。从而得到公式3,其中的新常数包含在S2和C2之中。
Vs = P x S2 + C2 公式3
因为输出信号仅为被测参数的函数,所以公式3不是比例关系。Honeywell公司的MLxxx- R5系列压力传感器就是非比例传感器。当在7V和35V之间的任何电源电压下工作时,失调都是1V,满量程输出为6V。
模数转换器(ADC)与阻性器件
用于将传感器信号数字化的ADC也是比例器件。无论其内部架构如何,所有ADC都是通过对未知输入电压与已知参考电压相比较来工作的。转换器的数字化输出是输入电压与参考电压的比值乘以ADC的满量程读数。考虑到内部放大和设计的多样性,还需要一个比例因子K。无论K值大小,只要ADC的配置未改变,K值都保持固定不变。公式4描述了一个普遍意义上的ADC (图2)的数字读数(D)和输入信号(Vs),参考电压(Vref),满量程读数(FS)以及比例因子(K)间的关系。
D = (Vs/Vref)FS x K 公式4
图2. 普遍意义上的模数转换器
参考电压的来源与ADC的具体设计有关。在一些ADC中参考电压是电源电压,而在另一些ADC中参考电压来自于内部基准源,在其他设计中,用户必须将参考电压连接至ADC的Vref输入端。如果使用了内部或外部电压基准,使参考电压成为一个衡定值,则公式4可简化为公式5,其中K2是一个新的常数,其值为FS x K/Vref。
D = Vs x K2 公式5
传感器的测量
由一个非比例传感器和具有固定参考电压的ADC组成的小系统的输出可通过将公式3 (传感器的输出)中的Vs (ADC的输入)代入公式5中得到。如公式6所示。
D = P x S2K2 + C2K2 公式6
公式6给出了所需的确切关系。数字量值(D)大小与P的变化成比例,并且仅受P改变的影响。D不受温度和电源电压变化的影响。
省去电压基准
利用电压基准稳定传感器和ADC是一种有效且必要的技术。然而,并非总是最好的技术。
本文的其余部分将讨论如何创造性地利用ADC的参考电压输入,从而省去许多传感器电路中的电压基准和电流源。这种设计节省了元件成本、电路板空间以及电压“净空”。由于省去了电压基准,非理想基准相关的误差也不复存在,因此精度也有所改善。这种技术已在汽车工业中应用多年。传感器和ADC与电源电压的比例关系一经确定,便无需精确的电压基准。
与之相似的采用电流驱动传感器和单元件阻性传感器(如RTD)的技术已不常用了。这些电路中ADC的灵敏度会随温度或电源电压的变化而变化。虽然如此,ADC和传感器输入的组合还是相当稳定的。
与电源电压成比例的传感器
将公式2中的输入信号(Vs)代入公式4,便可得到测量比例传感器时ADC的输出。得出公式7,该公式表示:D是P,Ve和Vref的函数。
D = P(S x FS x K x Ve/Vref) + C(FS x K x Ve/Vref) 公式7
乍一看,公式7中的方法似乎并不理想,因为输出(D)是三个变量的函数,而并非仅仅是P的函数。然而,仔细观察会发现:Ve/Vref的比值是非常重要的,单独的数值并无太多意义。如果Ve和Vref电压来自同一个电源,则很容易得到恒定的Ve/Vref比值。一旦这样的话,D将与P的变化成比例,并且只与P的变化有关。设Ve/Vref比值为一个常数,公式7可简化为与公式6相似的形式。因此,这就说明无需电压基准也能实现相同的性能。