或者每位6dB。
要得到一个ADC的SFDR,可以测量ADC的满量程正弦信号,利用一个高精度DAC和频谱分析仪测试ADC的输出,并且比较输出信号的最大基波成分与最大失真信号的电平。需要注意DAC的动态范围一定要远远高于ADC的动态范围,否则DAC的动态范围会制约ADC SFDR指标的测试。目前, 高速ADC 的SFDR指标可以达到80到90dBc,通过给ADC输入一个单音或双音信号可以测得该项指标。对于双音信号的性能分析,双音信号可以在共同中频中心频率两侧选择,频率间隔1MHz,比如对于140MHz的中频,双音频点选择为139.5MHz和140.5MHz。
包括ADC在内的接收灵敏度是噪声的函数,而噪声电平本身又是带宽的函数。降低噪声可以提高接收机的灵敏度。而有些噪声是不可避免的,如热噪声。ADC的背景噪声由热噪声和量化噪声决定,这些噪声限制了ADC的灵敏度。量化噪声本质上讲是模数转换器的LSB的不确定性。一般来说,ADC的背景噪声就是所允许的最低输入信号。作为接收机,不仅仅通过SFD
SNR = (1.76 + 6.02b) dB
实际上,它是满量程模拟输入的均方根与量化噪声均方值的比。将ADC的采样速率增加一倍,噪声将分布到两倍于前期带宽的频段内,有效噪声系数会降低3dB。确定ADC的SNR的最好方法是用一个精确的接收机和经过校准的噪声源进行测量,测量须考虑时钟抖动和其它噪声源,从而获得实际的SNR值。
总谐波失真(THD)是在信号傅立叶频谱上的所有谐波的均方根之和,前三项谐波集中了绝大部分的信号能量,对于通信系统来说,THD通常比静态下的直流线性度更重要。大多数厂商给出的器件参数中包含了前4次,甚至前9次谐波的数据。
MAX12599是一款Maxim推出的新型ADC,它在单一芯片上集成了2路14位ADC,每路ADC的采样速率可以达到96MSPs,可以采集中频和基带信号。这款双通道ADC具有内部采样/保持放大器和差分输入,对于175MHz的输入,它可以获得79.8dBc的SFDR、71.9dB的典型信噪比和70.9dB的信噪失真比(SINAD)(图1),总谐波失真为-77.9dBc。这款ADC工作在3.3V,仅消耗980mW的模拟电源功耗。
图1:MAX12559在96MHz时钟频率、-1dBFS输入时,SNR和SINAD与输入频率的对应关系曲线。
灵活的基准架构允许器件采用内置2.048V带隙基准或外部基准,并且允许两个ADC共用同一基准。可利用基准电路在±0.35V到±1.15V范围内调整满量程输入,MAX12599支持单端或差分时钟输入,用户可选择2分频和4分频模式,简化了时钟源的选择。
缓冲器的选择
在为MAX12559或类似的在现代通信接收机中的高速ADC选择 缓冲放大器 时,需要考虑一个因素。理想情况下,缓冲放大器需要具有与ADC相同的带宽或更宽的带宽,MAX12559的带宽是750MHz,至少需要满足被采样信号的带宽要求。ADC缓冲放大器一般按照频域特性定义指标,而普通的运算放大器规定建立时间和摆率指标。无论缓冲放大器如何定义指标,它必须具备ADC输入所需要的瞬态响应能力,使输入波形的削波或失真不会大于ADC的1LSB。
在接收机前端,缓冲放大器的噪声系数也有影响,但不占主导地位。在信号链路中,第一级放大器对接收机噪声系数影响最大,通常,具有最低噪声系数的放大器放在信号链路的最前端。因此,低噪声系数的缓冲放大器有助于改善整个接收机的噪声系数指标,但对缓冲器的噪声系数要求不像第一级放大器那样严格。如果接收机第一级低噪声放大器具有2dB或更低的噪声系数,对于缓冲放大器来说,6dB到7dB的噪声系数将会对接收机链路产生最小的影响。
缓冲放大器应该提供足够的增益,以确保送到ADC的信号接近于满量程输入电压,同时,还要很好地控制频率响应特性,增益平坦度应该保持在ADC的一个LSB之内。对于高分辨率(14位或更高)ADC,要求缓冲放大器在整个有效带宽内具有±0.5dB的增益平坦度。缓冲放大器应该按照输出电压和截点指标提供良好的线性度,例如缓冲放大器必须至少提供和ADC的输入要求一致出输出,线性度应优于ADC的线性度,以避免降低ADC的SFDR指标。
考虑缓冲放大器和ADC相位误差对杂散特性的影响时,可以由下式计算:
SFDR System = -20log{10exp[(-SFDR ADC)/20] + 10exp[(-SFDR Buffer)/20]} (dBc)