2.1.3 应用注意事项
AD6644的供电电源必须稳定性好,由于电源的高频分量容易产生辐射,所以在靠近AD6644各电源引脚的地方,应放置0.1μF的去耦电容。为了防止高速的数字输出变化将开关电流耦合进模拟电源,AD6644的数字电源和模拟电源应该分开。模拟电源应该在5V±5%的范围内,数字电源应为3.3V,同时尽可能地靠近电源放置0.1~0.01μF的陶瓷电容来进行高频滤波,并联放置10μF的钽电容滤除低频噪声。
为了很好地接收AD6644的数字输出信号,应尽量减小容性负载。AD6644的数字输出有一个固定的输出转换摆率(1V/ns),一个典型的CMOS门加上布线约有10pF的电容,因此每bit的转换会有10mA(10pF×1V/1ns)的动态电流出入器件,一个满量程的转换动态电流最
2.2 FIFO器件
AD6644输出的数据率高达286.72Mbit/s。如此高的数据率,如果直接用DSP的EMIF接口接收,会使DSP负荷过重。此外,如果存储控制系统不能及时地接收数据,上次的数据会马上被下次的数据更新,造成数据丢失,因此必须采用高速缓存。目前常用的缓存多为FIFO、SRAM及双口RAM等。双口RAM和SRAM存储量较大,但必须配以复杂的地址发生器。对于FIFO芯片,数据顺序进出,且允许数据以不同的速率写入和读出,并且外围电路简单,所以本设计选用TI公司的触发式FIFO SN74ACT7804作为数据缓存。
SN74ACT7804是一种高速的512×18bit的FIFO器件,存取速度最高可达50MHz,数据访问时间可达15ns。数据在LDCK的上升沿写入,在UNCK的上升沿读出。FIFO的状态可通过状态位:满(/FULL)、空(/EMPTY)、半满(HF)以及近空/近满(AF/AE)获得。SN74ACT7804只能上电复位。
2.3 DSP器件
由于ADC的高数据率输出,用DSP进行实时处理会有很大压力。在DSP进行运算之前,必须先进行数字下变频以降低数据率。通过对DSP算法运算量的整体分析,TI公司的TMS320C6201可满足设计需要。作为定点DSP,TMS320C6201主频可达200MHz,处理速度可达1600MIPS,并且它的外部存储器接口(EMIF)支持各种同步和异步存储器,对FIFO有很好的支持。
2.4 硬件接口设计
为了保证AD6644的采样输出信号准确、高效地送入DSP,在ADC与DSP之间将两片FIFO并列,构成双FIFO缓冲结构,并以32bit总线宽度连接到DSP的EMIF接口,具体连接如图5所示。通过这种接口设计,在充分利用EMIF的32bit数据线宽度的同时,又巧妙地实现了采样数据的奇偶分离,为DSP的数字滤波和FFT运算提供了方便。
首先介绍ADC与FIFO的接口。AD6644的14位采样信号输出D130与两个FIFO的数据输入D150相连(FIFO的D15和D14悬空),DRY信号经二分频后,一路连接低16位FIFO1的LDCK引脚,另一路经“非”门反相后连接FIFO2的LDCK引脚, DRY脚输出的是ENCODE信号的同频反向延迟信号。从时序图图6中可以看出,在DRY的上升沿处,采样信号D130准备输出,DRY信号可准确地作为后续FIFO的触发存储时钟信号。经二分频后的DRY信号在上升沿处交替触发FIFO1和FIFO2的写时钟,将奇偶采样信号分别存入不同的FIFO。
接着介绍FIFO与EMIF的接口。对于读FIFO的操作,这里用到EMIF异步存储器控制信号:输出使能AOE和读使能ARE、CEn是外部空间选择信号。从图中逻辑关系可看出,当AOE与CEn都有效时,OE有效,片选使能两个FIFO。当CEn和ARE同时有效时,UNCK无效,待读出的数据在此时进行初始化,随后ARE会跳变为正电平4,使UNCK产生上升沿,FIFO中数据被读出。图中两个FIFO的半满信号HF经过一个“与”门连接至DSP外部中断引脚EXT_INT,在运行中不断检测HF管脚状态。当两个FIFO皆达到半满时,“与”门输出由低变高,上升沿触发DSP外部中断EXT_INT。DSP启动DMA(直接存储器存取)以突发的方式读取FIFO数据。FIFO1中数据作为低16位,FIFO2中数据作为高16位,合并为32位数据读入DSP内部存储空间。