·上一文章:单片式稳压器LT3692A的设计要点
·下一文章:跌倒检测在远程健康监管系统中的应用研究
2 工业机器人运动学
从本文构建的软件体系结构来看,控制核心层的一部分内容就是运动学算法,本文设计的浇铸控制系统已经成功应用于东风集团某厂的铝制活塞的浇铸生产,下面以其所使用的意大利法塔铝UNO三轴浇铸机器人为例建立机器人运动学。机器人结构简图和关节坐标系如图5所示。
2.1 运动学正解
机器人三个关节坐标轴(实轴)分别为关节1(控制机器人左右运动)、关节2(控制机器人上下运动)和关节4(控制机器人末端容器翻转)。关节3并没有驱动单元,连杆与铅直线的夹角?酌是一个确定的值。关节3的作用在于当机器人关节1和关节2运动时,保证末端容器姿态不变,防止容器中高温金属液体泼溅造成不必要的损失。按照D-H方法建立运动方程[4,5],运动学正解得到末端容器在机器人基坐标系中位姿矩阵
3 系统信号控制的实现
控制核心层的另外一个重要方面就是PLC。本文设计的浇铸控制系统采用开关量交换信号,简单易行,并能满足工业机器人信号控制的应用需求。在前面提到的应用实例中,机器人系统与两台浇铸机、两台铝液熔炉和废料箱构成的浇铸系统进行频繁的信号交互。
3.1 浇铸系统功能需求
工作过程中,浇铸机器人运动过程示意图如图6所示。