随着社会老龄化的不断发展,预期到2030年空巢老年人家庭的比例将达到90%,届时我国老年人家庭将空巢化[1]。据统计,在65岁以上的老年人群中,每年有超过1/3的人都有跌倒经历,2/3老年人意外死亡都是由跌倒引起的,而在75岁以上老人中这个比例更是高达70%[2]。
跌倒检测是远程健康监护系统中家庭终端的一种实现方式,涉及多个领域,包括信号采集与处理,信号特征提取,数据传输等方面的研究。跌倒检测技术有很多,从信号获取的渠道进行分类,可将跌倒检测技术分为三类[3]:基于视频图像的跌倒检测,该方法不足之处在于它不能保证用户的隐私安全并且视频图像的质量受光线等环境影响较大;基于声学信号的跌倒检测,安装复杂且前期投入比较大;基于穿戴式装置的跌倒检测,较之前两种方法在适用环境上和对用户的干扰程度上有比较突出的优点。综合比较各类检测方法,基于穿戴式的检测方法对老年人的健康进行远程监管比较适合。
本文设计了一种佩带在腰部[4]的新型的基于加速度传感数据采集的跌倒检测模块。在数据预处理阶段,本文提出了基于1-class SVM分类预算法,并依据人体在不同动作下其能量损耗的最大量不同(阈值范围不同)进行跌倒判断[5],在确保系统准确性上增加了计算分析人体特定时间内的速度、位移及倾角这三个特征量作为辅助判据。
1 跌倒检测模块设计
1.1 架构设计
跌倒检测模块的总体架构如图1所示。主要由加速度采集单元、微处理器单元、无线通信单元以及远程跌倒监控后台等构成,整体模块采用锂电池进行。系统由加速度采集单元进行加速度的采集,经微处理器单元对信号进行预处理,经预处理提取的可疑数据通过无线通信单元传输至远程跌倒监控后台进行最终的分析处理,在检测到跌倒时系统能够自动触发警报项。
交互单元主要包括了功能按键、LED指示灯和蜂鸣器,其中功能按键为用户提供主动报警和取消误报警的功能,LED指示灯主要用于显示通信网络的连通状态,蜂鸣器在系统检测到跌倒时能得到一个反馈的警报信号。
1.2 信号预处理
首先,采用13阶的中值滤波器来滤除加速度采集装置采样值的噪声,然后采用一个截止频率为0.5 Hz的高通滤波器以及一个0.8 s的非重叠窗叠加来消除重力因素[6],以便滤出动态加速度信号作为下一步处理准备。
在滤波处理后,对原始数据采取基于1-class SVM的分类算法进行可疑数据的提取。1-class SVM算法是由SVM算法扩展而来,算法利用核函数将所有样本映射到高维特征空间实现分类。在特征空间里,1-class SVM确定了一个包含所有目标数据的最小超球面体表面,这个表面就是分类器。用一组松弛变量来控制超球体的半径和超出超球体的样本数量。通过此算法可以提取出绝大部分的跌倒性样本(阳性样本)。
通过训练后可以获得一组支持向量,然后通过式(6)计算出半径R: