(4)HMM训练
本系统先使用HInit工具对HMM模型进行初始化,再用HCompv工具来对模型进行平坦初始化。HMM模型的每个状态给定相同的平均向量和变化向量,在整个训练集上全局计算而得。最后用HRest的多次估计迭代,估计出HMM模型参数的最佳值,经多次迭代,将训练得到的单个HMM模型整合到一个hmmsdef.mmf文件中。声学模型HTK训练流程如图5所示。
3.2 Julius应用
3.2.1 Julius部署
在本系统中语音识别部分是部署在Atom Z510上,而Atom Z510上首先需要移植linux操作系统(本系统采用的是ubuntu8.10)以上步骤在此不详细介绍,文献中有详细说明。语音识别的核心部分是Julius识别器,需要将Julius源码编译部署到Atom Z510平台。其步骤如下:
①要确保linux系统中有以下支持库:Zlib、flex、OSS音频驱动接口、ESounD和libsndfile。
②从Julius官网下载源代码Julius-4.1.5。
③解压:tar-zxjf julius-4.1.5。
④编译:%./configure,%make,%make install。
3.2.2 Julius配置
Julius全部采用C语言代码实现,采用模块化设计方式,而且各功能模块可配置。在使用前需要将配置参数写入jconf文件,此文件作为运行参数载入系统,系统扫描参数配置并启动各功能块。其中重点介绍以下几个配置参数:
◆-dfa rtdog.dfa,指定语法文件rtdog.dfa;
◆-v rtdog.DICt,指定字典文件;
◆-h rtdog.binhmm,指定HMM模型文件;
◆-lv 8000,设定音频的阈值便于滤去噪音;
◆-rejectshort 600,设定最小的语音长度;
◆-input mIC,设定语音的输入方式为microphone。
3.3 语音识别系统软件设计
3.3.1 GUI设计
本系统为了方便测试,采用QT4的图形库来开发人机界面(GUI),同时加入了手动控制的按钮。其总体功能如图6所示。通信线程是本系统的数据传输枢纽,十分重要。在QT中通过对线程类QThread继承来实现新的线程设计。该类提供了创建一个新线程以及控制线程运行的各种方法。线程是通过QThread::run()重载函数开始执行的。在本系统中设计了1个数据通信线程,用它来不断地读取共享内存中的语音命令,然后将其转化为控制命令传给机器人控制模块。