热电发生器(TEG)其实就是热电模块,它利用塞贝克(Seebeck)效应将设备上的温度差(以及由于温度差所导致的流过设备的热量)转换为电压。这一现象的逆过程(被称为帕尔帖[Peltier]效应)则是通过施加电压而产生温度差,并为热电冷却器(TEC)所惯用。输出电压的极性取决于TEG两端温度差的极性。如果TEG的热端和冷端掉换过来,那么输出电压就将改变极性。
TEG由采用电串联连接并夹在两块导热陶瓷板之间的N型掺杂和P型掺杂半导体芯片对或偶所构成。最常用的半导体材料是碲化铋(Bi2Te3)。图4示出了TEG的机械构造。
图4:TEG的构造
有些制造商将TEG与TEC区分开来。当作为TEG销售时,通常意味着用于装配模块内部电偶的焊料具有较高的熔点,故可在较高的温度和温差条件下工作,因而能够提供高于标准TEC(其最大温度通常限制在125°C)的输出功率。大多数低功率能量收集应用不会遇到高温或高温差的情况。
TEG的尺寸和电气规格多种多样。大多数常见的模块都是方形的,每边的长度从10mm到50mm不等,厚度一般为2mm~5mm。
对于一个给定的ΔT(与塞贝克系数成比例),TEG将产生多大的电压受控于诸多的变量。其输出电压为10mV/K至50mV/K温差(取决于电偶的数目),并具有0.5Ω至5Ω的源电阻。一般而言,对于给定的ΔT,TEG所拥有的串联电偶越多,其输出电压就越高。然而,增加电偶的数目也会增加TEG的串联电阻,从而导致在加载时产生较大的压降。制造商可以通过调整个别半导体芯片的尺寸和设计对此进行补偿,以在保持低电阻的同时仍然提供较高的输出电压。
5 负载匹配
为了从任意电压电源吸取可获得的最大功率,负载电阻必须与电源的内阻相匹配。图5中的实例说明了这一点,此处,一个具有100mV开路电压和1Ω或3Ω源电阻的电压电源用于驱动一个负载电阻器。图6示出了输送至负载的功率与负载电阻的函数关系。在每一根曲线中都可以看出:当负载电阻与源电阻匹配时,输送至负载的功率达到最大。不过,当源电阻低于负载电阻时,输送的功率也许并非可能的最大值,而是比一个较高的源电阻驱动一个匹配负载时(本例中为0.8mW)更高(本例中为1.9mW),注意到这一点同样很重要。选择具有最低电阻的TEG可提供最大输出功率的原因即在于此。
图5:电压电源驱动阻性负载的简化原理图
图6:电源的输出功率与负载电阻的函数关系
LTC3108给输入电源提供了一个约2.5Ω的最小输入电阻。(请注意:这是转换器而不是IC本身的输入电阻。)这处于大多数TEG源电阻范围的中间,从而为实现近乎最佳的功率传输提供了优良的负载匹配。LTC3108的设计是:当VIN下降时,输入电阻增大(如图7所示)。该特性令LTC3108能够很好地适应具有不同源电阻的TEG。
图7:LTC3108的输入电阻与VIN的关系曲线(采用1:100匝数比)
由于转换器的输入电阻相当低,因此无论负载大小如何它都将从电源吸收电流。以图8所示为例:当采用一个100mV输入时,转换器从电源吸收约37mA的电流。不可把该输入电流误当作IC本身所需的为其内部电路供电的6μA静态电流(取自VAUX)。当在极低电压条件下启动或依靠一个存储电容器来工作时,低静态电流的意义最为重大。
图8:LTC3108的输入电流与VIN的关系曲线(采用1:100匝数比)