超级电容和电池组成的能量管理系统兼顾了超级电容的高功率密度及电池的高能量密度的优点,可以更好地满足电动汽车启动和加速性能的要求,提高电动汽车制动能量的回收效率,增加续驶里程。
1 系统总体概述
超级电容、电池能量管理系统主要由BLDCM驱动控制器和双向DC-DC电路两部分组成,系统框图如图1所示。
图1中,L、M1、M2组成双向DC-DC电路,VT1~VT6组成三相逆变器,并采用一个高端负载开关M3,在必要的时候控制母线和蓄电池的通断。蓄电池母线电压Vin=72 V,超级电容额定参数为165 F/48 V, 无刷直流电机参数为72 V/5.5 kW。电机运行时,负载开关M3导通,三相逆变器正常工作,双向DC-DC不工作,系统能量来自蓄电池;电机能量回馈制动时,母线电压高于蓄电池电压,并通过比较器C1信号触发关断负载开关M3,双向DC-DC工作在BUCK状态,超级电容被充电;电机启动或大转矩输出时,双向DC-DC工作在BOOST状态,这种情况一般只持续数十秒。超级电容能量充足时,能保证BOOST输出电压高于母线电压,负载开关M3关断。如果放电时间过长,由于超级电容不具有恒压特性,随着能量的消耗,其端电压会不断降低,对应BOOST电路的输出电压也会相应降低。当输出电压值比母线电压值小时,高端负载开关M3导通,此时由蓄电池单独为系统供电并关断超级电容部分的双向DC-DC电路。
2 系统工作原理及控制策略
2.1 双向DC-DC原理
本系统采用双向DC-DC变换器的原因:(1)超级电容端电压和蓄电池电压不匹配;(2)超级电容不具有恒压特性,由于与蓄电池电压特性不一致,不能直接将两者并接在一起。系统采用的超级电容额定电压为48 V,蓄电池额定电压为72 V,所以双向DC-DC变换器的低端电压为48 V,高端电压为72 V。由于电压变换范围不大,不需要采用变压器进行电压变换,直接采用PWM斩波即可实现。双向DC-DC结构如图2所示。
图2中的双向DC-DC变换器本质上由基本的BUCK电路和BOOST电路结合而成[1],将BUCK电路或者BOOST电路中的功率二极管用功率MOSFET替换即得到图3所示的电路拓扑。根据能量流向的不同,电路工作在BUCK降压模式或BOOST升压模式。
在BUCK降压模式中,M1管作为开关管使用,驱动信号来自PWM控制芯片;M2管作为二极管使用,且使用的是M2管的寄生体二极管,这时必须通过负压可靠关断M2才能实现电路的可靠运行。设定电路工作在CCM模式,降压模式下等效电路如图3所示。图3中箭头表示为电压、电流的方向,能量从V1流入V2,即超级电容的充电模式。t0~t1时间段表示M1开通,t1~t2时间段表示M1关断。设PWM周期为T,占空比为D,则M1开通时间为DT,M1关断时间为(1-D)T。根据电感伏秒平衡原理,电感L两端伏秒值在一个周期中的平均值为0,则电感一个周期的伏秒平均值可由下式求得:
在BOOST升压模式中,M2管作为开关管使用,驱动信号来自PWM控制芯片;M1管作为二极管使用,且使用的是M1管的寄生体二极管,这时必须通过负压可靠关断M1才能实现电路的可靠运行。设定电路工作在CCM模式,升压模式下等效电路如图4所示。图中箭头表示电压电流的方向,能量从V2流入V1,即超级电容的放电模式。t0~t1时间段表示M2开通,t1~t2时间段表示M2关断。设PWM周期为T,占空比为D,则M2开通时间为DT,M2关断时间为(1-D)T。根据电感伏秒平衡原理,电感L两端伏秒值在一个周期中的平均值为0,则电感一个周期的伏秒平均值可由下式求得:
由于占空比0<D<1,式(2)表明V1>V2,即V2通过PWM斩波得到满足电机工作要求的母线电压V1。