·上一文章:三星32英寸液晶屏背光灯驱动电路工作原理
·下一文章:正确认识自动挡汽车变速器
两级CMOS运算放大器的密勒补偿有直接密勒补偿和共源共栅密勒补偿方法。用共源共栅密勒补偿技术设计出的CMOS运放与直接密勒补偿相比,具有更大的单位增益带宽、更大的摆率和更小的信号建立时间等优点,还可以在达到相同补偿效果的情况下极大地减小版图尺寸。
对于该运放的频率补偿,采用了共源共栅密勒补偿方式。如图2所示,总体设计的补偿回路中包含了共源共栅级M14,M16。
本文采用0.5 pF的密勒补偿电容,通过仿真可得到相位裕度为70°,单位增益带宽为121 MHz,补偿效果较好。
3 仿真结果
3.1 输入级跨导
为了验证该电路的性能指标,用HSpICe进行了模拟仿真。共模输入电压直流扫描输入级跨导的变化曲线如图4所示为输入级跨导随输入共模电压变化的曲线,由图中可以看出,输入共模电压从0~3.3 V变化,跨导的变化维持在±5%内,基本上保持恒定,达到了设计的要求。
3.2 放大器的性能指标
采用HSpice对图2所示CMOS运算放大器进行仿真分析的条件为:电源电压为3.3 V,输入共模电压为1.65 V,负载电阻为10 kΩ。在对该放大器各个性能指标进行仿真的同时,与输出级为A类时进行了比较。本文所设计电路的仿真结果如图5,图6所示。表1所示为两类输出级的仿真性能参数。
4 结语
仿真结果表明,在3.3 V的供电电压下,该运放输入级跨导在整个共模输入范围内仅变化±5%,其输入共模范围和输出信号摆幅接近于地和电源电压,有较好的单位增益带宽和相位裕度,输入输出线性动态范围宽,静态功耗小于0.45 mW,在低压低功耗应用方面,如便携式电子设备方面较为适用。