图1:仿真电流模式控制方框图。
当斜坡电压接着被叠加至以前采样下来的电流测量值之上,结果得到一个看起来很像控制FET的电流波形的梯形波形,减去所有常见的非理想特性。这就赋予ECM精确地控制非常窄脉冲的开关的能力,这是大降压比率调整器非常需要的一种特性。然而,问题依然存在,小信号的行为仍然是电流模式调整器所期望的那样吗?实际上,下面的测量绘图表明,显然就是所期望的那样。
图2:ECM信号行为图。
利用干净的、具有宽工作范围的、单极点控制架构,最终用户拥有利用这种便于补偿的特点的灵活性,这一点是有趣的。用户可以采用大约在300Hz的一个零点来实现非常简单的、显性的极点补偿。该设计容许从1KHz远至30KHz之间的某个频点出现交叉频率,因为这是简单的RC补偿。正是该控制架构的宽容特性才得以维持环路设计的简单性。
把ECM降低至切合实际
LM5576家族的SIMPLE SWITCHER降压调整器就是利用这种简便的补偿特性,通过可达到的环路补偿把一定程度的控制能力返回给用户,相比之下,以前版本的SIMPLE SWITCHER调整器完全依赖于内部的、工厂预先编程的增益特性。
当然,为了真正利用环路增益的灵活性,工作频率也应该是灵活的。这就容许用户在效率、解决方案的尺寸以及动态性能之间做出性能折中。例如,如果用户要求极佳的动态性能,而效率却是次要考虑,那么,设计工程师可以选择运行在比较高的时钟频率,因此,把LC滤波器中存储的能量最小化,并容许得到更好的瞬态响应。
相反,对于以加大一些电路板空间来获得最优化效率的应用,用户可以选择较低的时钟频率,相关的LC滤波器就较大。归因于滤波器单元中存储的较大能量,动态性能会被打折。然而,在任何一种情形下,环路可以方便地针对选定的LC滤波器元器件以及时钟频率进行裁剪。对于具有很大级别的动态加载的系统,较快的控制环路准许减小输出电容,因此,节省了整个设计的成本。
为了努力最小化用户部分的设计工作量,整个调整器可以采用完全自动化的、著名的专家系统WEBENCH来设计。该软件将生成确实稳定且达到预期功能的各种设计。然而,该软件尚未智能到自己就足以把调整器的动态性能设计为最佳,那还需要少量的用户介入。对于大多数应用来说,那是不必要的。
然而,对于那些在控制环路中需要少许额外带宽的情形来说,用户可以选择调节补偿。各种瞬态仿真的结果可以被观察到,就像观察整个环路增益的波特图一样,而由软件选择的补偿可以被调节,以努力改善环路的动态性能。用户可以自由地把环路带宽推至远远高于工厂在传输函数中开始显示的高频率极点,因此,在稍微牺牲相位裕量的情况下,可以扩展环路带宽,而瞬态动态性能得到了充分的改善。
为了迫使环路进入稳定状态,对于电感器以及输出电容的数值基本上没有限制。在下面的例子中,开关频率被提高至500KHz,从而容许电感器的数值为15uH,而电容器的数值为220uF。与简单的、单片电路调整器相比,结果得到了一个看起来相当好的大负载阶跃响应特性。
图3:大负载阶跃响应的实例。