1.5 拱顶温度管理期最佳煤气流量模糊控制器
在保证拱顶温度不变的情况下,管理期应尽量选择空气过剩系数大的条件进行燃烧,从而获得较多的烟气量,增加热风炉的蓄热量。以最快的时间达到拱顶管理温度,进入温度管理期,在达到废气管理温度之前,都采用温度管理期最佳空燃比模糊控制器,在达到废气管理温度之后,以废气温升速率作为控制量,最高废气温度作为限制终点。模糊控制器以废气升温速率偏差和偏差变化率作为控制输入,煤气流量调节增量作为控制输出量。
2 模糊控制器的热风炉燃烧系统的应用
模糊控制技术是近代控制理论中的一种高级策略和新颖技术。模糊控制技术基于模糊数学理论,通过模拟人的近似推理和综合决策过程,使控制算法的可控性、适应性和合理性提高,成为智能控制技术的一个重要分支。
模糊控制器实际应用于热风炉燃烧系统中,还需要确定模糊控制器输入输出量的论域范围,隶属函数的选取,模糊控制器参数的确定,解模糊化方法及在燃烧初期何时启动和停止模糊控制器的空燃比调节,即是拱顶温度发生变化到什么程度才启动模糊控制器的空燃比调节。故可以取0.6%作为控制目标,并把0.4%~0.8%作为稳态控制区间,在此区间内不进行控制调节。当烟气残氧的体积分数低于0.4%或大于0.8%时启动空燃比调节系统。
本模型嵌入到某钢厂的WinCC监控系统组态平台的运行环境和操作平台,利用可与之相兼容的Visual C++语言进行参数检测和燃烧模型程序的编写,从模型得到空燃比、煤气流量增量转化为对空气调节阀和煤气调节阀的控制,并下发到PLC,从而实现对现场设备的控制,完成集散系统和应用软件的无缝连接。
3 仿真结果
用滞后的一阶惯性环节的拉氏变换近似模拟热风炉的数学模型。确定k及T的值。如图3所示,图3中实线为模糊控制的仿真曲线,虚线为PID控制的仿真曲线。模糊控制算法作用时,其超调量为σp=1.5%,调节时间为ts=550s,PID控制算法作用时,其超调量为σp=4.1%,调节时间为900s.由图形曲线可以看出,模糊控制优于PID控制,模糊控制的响应速度比较快,超调现象明显减小。
4 结论
模糊控制在工业、农业、家用电器等各个方面已经获得许多成功的应用,本文将其运用于热风炉控制系统。根据热风炉自动化控制的要求及热风炉燃烧控制的特性,考虑了国内热风炉基础自动化的现状对热风炉燃烧控制系统进行了设计。在系统中应用了模糊控制理论,并应
用模糊控制技术设定最佳空燃比和煤气流量,以达到最佳燃烧控制的目的。
本文设计的最佳空燃比模糊控制器,涉及热工参量少,对煤气热值、残氧量的检测不作要求,绕开了控制中的建模困难的问题,通过仿真结果与现场实际比较,提高了燃料的利用率,节约能源,而且比采用传统控制方法的燃烧过程更加稳定,能安全平稳地给高炉提供尽可能高温的热风,不像基于热风炉数学模型的一些控制方法对软、硬件要求那样高,投入成本较低,适合热风炉自动控制的要求。