·上一文章:基于FX1N_40MT可编程控制器的抢答器电路设计
·下一文章:基于ARM的新型智能交通信号灯系统设计
2.3 噪声特性
噪声是影响带隙基准源稳定性的主要因素之一。通常噪声分为外部噪声和内部噪声。外部噪声一般都由电源电压的变化以及其他电路的干扰造成。内部噪声主要包括热噪声和闪烁噪声。闪烁噪声的大小与频率成反比,因而在低频下主要为闪烁噪声,而高频下为热噪声,对于高频的热噪声,可以在输出端Vref处加一个RC低通滤波器解决掉,而低频的来自耦合到电源的噪声则是需考虑的,可以通过提高电源抑制比来减小。图5为电路在输出端和电源电压处的噪声特性,在输出端低频时噪声为10.4 nv/Rt,高频时噪声几乎为0 nv/Rt,性能很好。电源电压处的噪声为9.6nv/Rt左右。
2.4 电路其他参数
电路的其他方面的性能仿真结果如表1所示。表1的仿真结果是在电源电压为3.3 V的条件的测得的。有效电流指的是在电路正常工作的情况下从电源到地之间的电流,关断电流指的是在电路不工作的情况下从电源到地的漏电流。
3 结论
本文研究了一种在0.25 μm N阱CMOS工艺下采用一阶温度补偿技术的CMOS带隙基准电压源。电路经过参数优化后用T-SPICE仿真结果为:在3.3 V电源电压下的输出的参考电压为1.403 1 V,当温度在-20~70℃之间变化时,电路的温度系数达到了10x10-6/℃,室温下电路的功耗为5.283 1 mW,电路低频时的电源抑制比特性还不是很好,还有待于进一步的提高,高频时的电源抑制比非常好,因此本电路可以广泛应用于低功耗,低温漂,高频集成电路中。