·上一文章:倾角传感器在太阳能跟踪系统中的应用研究
·下一文章:WordPress 3.3.2 正式版:网络特权升级
图3中左端端子分别为:端子1为摆杆偏角进入±20°范围时的加速度输入端;端子2为倒立摆摆杆的角度输入端;端子3为摆杆偏角进入±5°范围时的加速度输入端,端子4为干扰信号的输入端。中间的Abs和Switch框分别为取绝对值模块和选择开关模块。右端Acc为逻辑切换单元输出,即加速度信号。
2.6 逻辑切换单元原理
当摆杆偏角进入±20°范围时,自动切换到LQR控制器,以实现摆角的控制和稳摆;当摆杆偏角进入±5°范围时,自动切换到作者设计的控制器稳摆。
3 仿真实验
本文所用实际系统的模型参数为:l=0.25 m,g=9.8 m/s2,采样周期T=0.020s。
将上述参数代入第1节中系统状态空间方程式(3),可得系统的实际模型(4)如下:
K=[-3.1623 -3.7134 31.1664 5.718 3]在线仿真的实时小车位置(单位:m)、摆杆角度(单位:(°))和干扰变化波形如图4所示。
嵌入式组合式控制器控制过程中小车位置Pos、摆杆角度Angle和干扰信号Dist的在线仿真响应波形变化情况分析如表1所示。结果表明本文提出的嵌入式组合式控制算法对直线单级倒立摆系统的控制正确、有效。能够达到自动和安全的控制效果,满足系统的设计要求。
4 结论
本文根据线性系统理论、最优控制理论和自动控制原理没计了组合式控制器,其可行性和有效性在单级直线倒立摆系统上得到了验证。该控制器具有简单、直观和易于实现的特点。只要摆杆的初始角度在±20°范围内,嵌入式组合控制器都能使倒立摆控制系统保持稳定的倒立平衡状态。本文建立的实验平台也可作为控制系学生的《自动控制原理》课程设汁实验及考核平台。