Power-balanced TopDise算法的合理性可以由图1说明。图1(a)为TopDisc算法的分簇结果;图1(b)为Power-balanced TopDise算法的分簇结果。其中,电量为80的节点为初始节点。初始节点发出拓扑发现请求到电量为20的节点变为灰色,并继续广播拓扑发现请求。电量为30和90的节点同时收到拓扑发现请求。在Power-balanced TopDisc算法中,电量为90的节点先于电量为30的节点变为黑色,即成为骨干节点(簇头节点)。
经过上述基于电量均衡的Power-balanced TopDisc算法处理后,剩余能量较少的节点将不再担当骨干节点,有利于延长网络的生命周期,从而实现均衡耗能。
4 性能分析和实验
为评估Power-balanced TopDise算法的性能,采用软件进行多次仿真试验,以所获得的分簇结构作为主要性能指标,并与TopDisc算法进行比较。
仿真模拟配置如下:假设有400个节点随机地部署在一个400×400的正方形平面区域内;每个节点的剩余能量为1~100的随机值。由TopDisc算法和Power-balanced TopDisc算法所生成的分簇结构分别如图2和图3所示。
对于该WSN,TopDisc算法得到的分簇结果是骨干节点平均电量为51;Power-balanced TopDisc算法得到的分簇结果是骨干节点平均电量为56。由于Power-balanced TopDisc算法生成的分簇结构考虑了节点的剩余电量,因而它使得剩余能量较少的节点成为普通节点,节省了担当骨干节点耗费的能量,从而延长了整个网络的生命周期。
5 结 语
在此,提出一种基于电量均衡的Power-balancedTopDisc算法,该算法考虑了节点中剩余电量的多少,对节点赋予一定的约束,让剩余能量较多的节点担当骨干节点,承担数据转发任务,保证了低电量节点不会因转发过多数据而过早失效,从而延长整个网络的生命期,实验结果证明了该算法的有效性。