2 系统设计方案
该系统方案如图1所示,以低噪声、精密控制的可变增益放大器AD603为核心设计程控增益放大器。其最大增益误差为0.5 dB,满足高精度要求,其增益(dB)与控制电压(V)成线性关系,因此可使用单片机控制D/A输出电压改变放大器增益,同时减少噪声和干扰。以MAX262为核心的程控滤波器通过单片机SPI总线精确控制滤波器的传递函数,对中心频率和品质因数独立编程设置,实现64级中心频率、128级品质因数的智能控制。点阵式LCD构建友好的菜单界面并显示自定义提示和复杂的图形数据.
实验增加了幅频特性测试仪,其信号发生部分采用Altera公司的FPGA EP1C6T144C8,利用DDFS技术产生频率范围为100 Hz~200 kHz的扫频信号,频率步进可精确到1 kHz内。信号送入被测网络,输出通过AD637得到信号的真有效值,采用A/D进行采集并发送回单片机进行处理,在液晶显示屏上可画出系统的幅频特性图。
3 理论分析与计算
3.1 程控放大模块
该系统设计采用两片AD603顺序连接,两极间以电容耦合。由于一片AD603在已定制的模式下增益为-lO dB~30 dB。带宽为90 MHz,故级联方式可使增益达到-20 dB~60 dB,控制电压为0 V~2 V。该控制电压由单片机控制8位A/D转换器ADC0832产生,其精度可达2 V/256=0.007 812 5 V,增益精度可达0.312 5 dB。因此,完全可满足系统发挥部分中增益60 dB,步进10 dB的要求。
3.2 MAX262模块
采用MAX262双滤波器级联构成四阶程控滤波器,输入脉冲是由单片机的ALE通过十六进制计数器进行十六分频所提供的。MAX262的低通滤波传递函数为:
式中,fCLK为输入脉冲频率,fo为中心频率,N1为F0~F5对应的十进制数。
式中:Q为品质因数,N2为Q0~Q6对应的十进制数。
3.3 幅频特性测试模块
FPGA由DDS原理产生扫频信号,其内置双口RAM频率字位宽32 bit系统时钟fCLK为166 MHz,因此,频率分辨率f=fCLK/232=0.038 64.Hz,其带宽为166 MHz。真有效值转换器AD637的转换公式为Vrms=Avg[VIN/Vrms],读取输出信号的有效值。
4 系统设计
4.1 硬件设计
4.1.1 增益控制
增益控制的核心电路由可变增益运算放大器AD603和精密运算放大器ADOP37组成。其中以AD603为核心,辅以外围电路实现程控放大器,其增益与控制电压成线性.单片机控制D/A输出控制放大增益。其电路原理图如图2所示。
4.1.2 程控滤波
程控滤波主要是由MAX262通过程控实现。MAX262通过单片机SPI总线对滤波器参数编程实现程控滤波器,其中心频率和品质因数分别为64级、128级编程可调,其电路原理如图3所示。
4.2 软件设计
该系统设计的软件设计流程如图4所示,在选择滤波器种类后等待输入放大增益参数,计算参数对应的D/A输出数值,向D/A发送数据,并锁存。等待接收滤波器的参数,通过计算,对MAX262编程,并控制数据选择器选择输出MAX262的低高通引脚信号。等待接收键盘信息,如果是左右方向键,则改变滤波器截止频率:如果是上下方向键,则改变放大增益。当选择幅频特性测试仪时,通过ADC采样真有效值转换器AD637的输出,通过计算采样结果,得出幅频特性,并在液晶上显示。
5 测试结果
5.1 功能测试
将输入信号和放大器输出信号分别接入双踪示波器,调整合适的电压幅度,观察两波形区别。放大器输出电压在1 dB~10 dB范围内无明显失真。
使用EDA系统板的FPGA和DAC产生扫频正弦波频率范同50 Hz~220 kHz,步进10 kHz,输出端分别接到数字示波器和幅频特性测试仪的输入端。将数字示波器的FFT功能与幅频特性测试仪得到的幅频特性结果相比较,测试的幅频特性测试仪精确性较高。
5.2 参数测试
波形发生器产生10 mV的正弦波,同时接入双踪示波器的CH1踪和放大器输入端,将放大器输出端接入示波器的CH2踪。通过测试数据可知增益误差<5%。而低通滤波器-3 dB截止频率与理论值的误差<4.8%。对于高通滤波器而言,使用数字示波器测量的输出端峰峰值是输入端的0.707倍,其发生器的频率为51.31 kHz。
6 结束语
基于MAX262的程控滤波器完全达到电压增益10 dB步进可控,最大增益40 dB;滤波器模式可选,截止频率1 kHz可调,设置显示参数功能等要求.其最大增益可达60 dB,扩展了简易幅频特性测试仪。