2 系统总体设计方案
系统总体设计包括数字和模拟两大部分。其中,数字部分包括单片机及FPGA中的放大器增益控制、时钟频率生成以及频率特性测量与显示3个模块;而模拟部分包括放大器、滤波器和幅频特性测试仪3个模块。其中放大器模块通过三级放大实现0~60 dB的增益调节,滤波器模块包括由集成滤波器MAX263构成的低通和高通滤波器以及自行设计的椭圆滤波器,而幅频特性测试仪模块则由DDS扫频信号源、有效值检波及A/D转换电路构成。详细的系统组成框图如图1所示。
3 理论分析与计算
3.1 可变增益放大器控制信号
选用ADI公司的AD603作为可变增益放大器,该器件的增益与控制电压的关系:GAIN(dB)=40Vg+10,Vg为控制电压,改变范围为1 V。选用16位D/A转换器MAX542,用于给出双极性的控制电压,基准源取2.5 V,理论上增益步进的最小值为0.003 dB。
3.2 开关电容滤波器
3.2.1 确定滤波器Q值
采用MAXIM公司的集成开关电容滤波器MAX263,它可以通过外接引脚编程设置滤波器的Q值。Q值与带内最大增益G(V/V)之间的关系为C=Q/[1一(1/4Q2)]1/2,为使带内尽量平坦,则使G=1,代入公式可得p=0.707,故可将滤波器的Q值设置在O.707左右。
3.2.2 频谱混叠现象
由于时钟信号的存在,开关电容滤波器相当于一个采样系统,满足奈奎斯特采样定理。由于MAX263内部对时钟信号elk二分频,故clk/4附近及以上的信号都存在频谱混叠现象,从而使输出波形产生失真。为了解决这个问题,需要加大clk与截止频率的比值,使输入信号的频段远离时钟信号所在频段。
4 系统硬件设计
4.1 放大器电路
放大器电路分为三级。第一级采用低噪声运放进行固定增益放大,以提高输入信号的信噪比;中间级采用可变增益放大器AD603,动态增益范围为30 dB;后级为两档程控放大,增益之差为30 dB,实现0~60 dB的增益范围。其电路如图2所示。
4.2 四阶椭圆低通滤波电路
该电路为LC无源电路,如图3所示。根据滤波器设计手册中的归一化设计表格,查表得到所需要的电容电感值。实际测试结果为:带内摆幅小于0.5 dB,截止频率50 kHz左右。
5 系统软件设计
系统软件设计部分遵循结构化和层次化的设计原则,由主程序及若干子程序构成。子程序主要完成放大器增益设置、滤波器参数设置、幅频特性测试及人机交互等功能,主程序则通过调用子程序控制时序。该程序以按键中断为主线,以各项功能作为分支,程序流程图如图4所示。
6 测试结果
本系统需要测试的数据主要是放大器的电压增益和滤波器一3 dB的截止频率。测试放大器增益时,利用毫伏表测出放大器输入及输出信号的有效值,将算出的增益与程序预置值相比较;测试滤波器截止频率时,改变输入信号的频率,同时利用毫伏表测出滤波器输出及输入信号的有效值,直到两者之比为一3 dB时记录频率值,然后再与预置值相比较。对放大器增益的测试。取选100 Hz,1 kHz,40 kHz 3个频率点来测试放大器增益,将预置增益和实际增益相比较。其中100Hz和1 kHz处的增益误差小于l%,40 kHz处的增益误差小于2%。
对截止频率的测试。在给出的10组预置值中,将实测值与预置值进行比较。测试结果表明,低通模式下截止频率的误差小于2.2%,高通模式下截止频率的误差小于2.5%。
7 结语
本系统设计实现了预期的基本功能和指标,并且扩展了在示波器上显示幅频特性曲线的功能,同时扩大了截止频率调节范围,缩小了步进量。当然,本系统还存在某些不足,其中,高通滤波器输出波形在某些频率点有较明显失真;放大器输出波形在幅值较小时信噪比较低。