2、开关量采集电路。开关量主要有两个:表示负载状态的STA_LOAD和表示电力MOSFET状态的STA_SSPC。规定:当负载的电流大于SSPC额定电流的15%时,表示负载状态的开关量STA_LOAD为低(0);当MOSFET处于导通状态时,表示MOSFET开通关断状态的开关量STA_SSPC=1。通过对CPLD采集到的A/D通道的数据进行判断:当i_load大于负载电流的15%时,表明负载导通,置STA_LOAD0;当i_load小于负载电流的15%时,表明负载不工作,置STA_LOAD为1。STA_LOAD通过CPLD的I/O口输出。
3、I/O驱动与隔离电路设计。CPLD与外围器件接口时,应考虑驱动能力,在中间添加驱动器和隔离器件,以保护CPLD不受损害。因为比较器是12V供电,所以出来的状态量信号为12V信号,而逻辑判断模块的CPLD是3.3V I/O供电和2.5 V内核供电,因此对SSPC状态信号的采集和控制信号的输出都需要经过电平转换和电气隔离,具体采用光耦隔离的方式,既实现了电气隔离,又实现了电平转换。当控制信号从CPLD输出时,因光耦的驱动电流相对较大(20mA左右),如果直接从CPLD输出来驱动,就会使CPLD因电流太小而无法驱动,因此实际中采用六通道反相器74HC04来做光耦前一级的驱动。而对输入CPLD的信号,因为是从光耦输出来的,电流一般不大(Ic<5mA ),所以可以不用反相器来驱动。
3.4电源电路
在目前的实验系统中,SSPC的供电由市电经变换得来。它所使用得电源种类较多,包括2.5V, 3.3V, +5V,-5V, 12V等。其中,2.5 V为CPLD核心所使用的电源,CPLD的I/O引脚需要使用3.3V的电源,+5 V电源用于一些外设器件和参考标准,12V电源主要用于运算放大器和比较器。3.3V和2.5V电源都是由5V电源变换得到的。5V和12V则采用了ANSJ公司生产的AC/DC电源模快得到,这类电源使用简单,具备高功率、高效率、宽输入范围、低噪声、可靠及应用简易等优点,且结构紧密,具有优良的输出编程和低待机损耗等特性,具备输出过压保护及过温关机功能。图4是5V转2.5V和3.3V的电源电路,采用了输出电压连续可调的器件LM317。它可以提供高达1.5A电流,而且电压调整方便,非常适合CPLD的供电要求。如图4中的2图所示,输出电压VCCINT=1.25(1+R1/R2)+IADJR2。
(1) (2)
图4 2.5V、3.3V电源电路
4 可编程逻辑区设计
1、A/D数据采集模块。利用状态机的概念,一个步骤对应一个状态,每个状态赋予CPLD特定的功能。将AD7874的工作大致分为10个步骤区间。AD7874转换的量化噪声与输出位数和量化步长有关,输出位数越多,量化步长越小,则量化噪声越小。实际A/D转换器多为定点制,动态范围为±1,输出最大值为1。如果只考虑量化噪声,则输入信号信噪比为
即 SNR= (6.02b-3.1876) (dB)
如果AD7874为12位,则SNR=70dB左右,在应用中一般已经足够,字长过长并不是非常必要,因为输入模拟信号本身有一定的信噪比,A/D转换器的量化噪声比模拟信号的噪声电平更低是没有意义的。
2、开关量采集模块。上位机下传的控制信号,由于存在各种干扰,使得开关量在实验中经常出现抖动,另一方面,电路中经过比较器得到的开关量(如STA _SSPC),由于主电路中的电流不稳定,偶尔出现电流过冲,使得送到CPLD的开关量信号也会出现抖动;这些都会导致SSPC经常误动作,为此,需要设计一个专门的开关量去抖动电路,降低SSPC误动作的概率。实际中采用的是延迟电路后级加上R-S触发器,具体的工作原理如下所述:先将输入信号先引至输入端,经过两级的D触发器延迟后,然后再通过RS触发器作处理。
3、整个数据分析过程包括以下几部分:
(1) 当电流在额定范围内,SSPC正常工作;
(2) 电流大于额定电压,小于额定电压的800%时,SSPC进入反时限保护;
(3) 当电流大于额定电流的800%时,SSPC立刻跳闸。
4、逻辑判断模块。逻辑判断模块将采集到的电流信号、接收到的控制命令和内部状态,经过逻辑判断后,综合得出电力MOSFET的导通/关断指令,作为驱动电路的输入信号。程序流程如图5所示。在对SSPC的控制中,最容易出现的问题就是误动作,为此,采用了较为复杂的控制逻辑,以此降低SSPC误动作的概率。SSPC的控制是通过“相邻两位、多条指令”两个步骤来完成的,只有几个条件同时满足才能使SSPC动作,缺一不可,这就大大降低了SSPC误动作的概率。
图5 MOSFET的驱动信号产生流程图
本文作者创新点
本文基于CPLD控制的直流固态功控系统的研究与设计。完成了SSPC外围硬件电路设计,包括主控芯片和A/D转换芯片MOSFET主电路及缓冲保护电路的连接,模拟量采集电路,开关量采集电路,电源电路等;完成了CPLD上可编程逻辑部分的VHDL实现,包括A/D转换器的控制,电流的分段保护,SSPC动作命令判断逻辑的生成等。