中频信号通过相位检测滤波后,得到一个带有陷落的本振信号,对其求绝对值,再经过均值滤波,滤除噪声引起的小陷落及本振信号,得到一个平滑的不带本振的陷落信号。把该信号与陷落门限相比较,并通过单稳整形,恢复出一个方波信号。最后通过位同步时钟对该方波进行抽样判决,直接恢复出基带DPSK信号,不需要进行差分译码。
2.2.2 DPSK自适应解调仿真
针对微波着陆系统信号的特点,根据微波着陆信号的参数设计仿真输入信号,对自适应DPSK解调进行了Matlab仿真。设计仿真输入信号的中频载波为30 MHz,系统采样率为100 MHz,调制信号的数据速率为15.625 kHz,信噪比为0 dB,本地载波的频率为30 MHz。噪声源为方差为1的正态分布随机噪声。仿真时间取0.6 ms,仿真的输出波形如下。
如图4所示,图4(a)为原始信号,原始信号通过差分编码器后,输出如图4(b)所示的差分编码信号。当原始信号为“1”时,相位发生变化,当原始信号为“0”时,相位不发生变化。差分编码信号通过调制器调制到带噪声的载波上,形成如图4(c)所示的DPSK调制信号。由于载波的频率较高,所以相位突变的细节不清晰。DPSK已调信号通过相位检测后,输出如图4(d)所示的带有波形陷落的信号。该波形陷落是由于已调信号的相位突变,本振信号跟踪相位突变造成的。这个波形的陷落程度与自适应滤波器的调整步长有关。由图4(d)可以看出,每一次波形的陷落都反映了差分编码信号相位的变化。相位检测输出波形经过取绝对值后输出波形,如图4(e)所示。图4(e)的波形再通过均值滤波器后,形成图4(f)波形。图4(f)是一个平滑的陷落波形,其平滑程度与噪声大小及均值滤波的阶数有关。
如图5所示,对图5(a)输出的均值滤波波形进行门限比较,并且通过单稳的方式输出比较结果。单稳的时间与DPSK传输码元的宽度一致。图5(c)是位同步脉冲的输出,该脉冲是由滤波器滤波输出的,所以需要一个响应时间。因此前一个同步脉冲是无效的。用同步脉冲的下降沿对单稳输出结果进行采样,恢复出如图5(d)所示的数、据。如图4(a)是发送的原始信号波形,如图5(d)是解调恢复后的数据波形。通过对比发现,自适应解调算法能够正确地实现DPSK信号的解调。
3 系统的硬件实现
系统使用ADI公司的新一代定点DSP—BF532作为系统的信号处理器。使用Altera公司的Stratix系列FPGA及高速AD实现中频采样,同时担负部分微波着陆信号的处理任务。DSP通过其内部的PPI(并行外设接口)接口与FPGA进行采样数据的交换,同时通过DSP的数据总线协调FPGA的工作。与飞行控制系统的数据通信则通过数据总线和地址总线的方式进行。同时设计了RS232通信单元,用于系统的调试及系统正常工作时设置系统参数。DSP采用外部并行Flash引导方式,Flash通过数据总线及地址总线连接到DSP系统中。考虑到系统的程序代码量比较大,所以设计了外部SRAM单元,DSP的部分程序放置到外部的SRAM空间中,中频采样回来的数据则放在DSP内部的SRAM中,这样做可以更好地发挥DSP的数据处理能力,提高系统的实时性。在电源的设计中,模拟电源与数字电源独立。为了降低系统的功耗,数字系统电源采用开关电源。为了提高模拟系统数据采集的精度及稳定性,模拟部分电源则采用线性稳压电源实现。接收机的中频处理系统具体实现框图,如图6所示。