摘要:以现代测试技术、信号处理、信息融合等理论为基础,以神经网络在模拟电路故障诊断中的应用为主线,详细讨论BP神经网络在模拟电路故障诊断中的应用和故障特征提取方法。采用多频组合法建立了故障样本集。对选定的待测电路在元件存在容差的条件下,仿真验证了BP神经网络应用于模拟电路故障诊断的可行性。
关键词:故障诊断;模拟电路;BP神经网络;故障特征提取
O 引 言
随着电子工业的发展,电子设备越来越复杂,其中的模拟器件和电路不可缺少。理论分析和实际应用表明,这些设备中的模拟电路比数字电路更容易发生故障。对这种设备的维护和保养十分复杂,需耗费大量的精力和财力。另外,随着超大规模模拟电路的发展和电子器件复杂性的提高,传统的人工故障诊断方法已经无法满足要求,这就迫使科技人员进一步探索新的测试理论和方法,研制新的测试设备以适应社会的需求。
l BP网络简介
1.1 BP网络模型
图1为一个三层前馈网络模型,由输入层、输出层和隐层3部分组成。根据需要,可以有多个隐层。每一层的每个神经元(结点)的输出经连接权值加权求和作为下一层每个神经元的输入,层与层之间没有反馈。
1.2 BP网络用于故障诊断的基本思想
BP网络用于模拟电路故障诊断的基本思想为:确定了电路的待测状态集后,求电路处于其中一种状态时的响应(通常是测试点的电压)必要的预处理,作为对应状态类的一个特征。对状态集中的每一类状态,都按上述方法获取大量特征,并从中筛选出具有代表性的特征构造训练样本集。然后,用这些样本训练与所求问题相对应规模的BP网络。BP网络的输入节点数应与特征向量的维数相同。输出节点的维数等于待测故障状态的类别数。在训练时,把状态特征输入到BP网络的输入节点,要求网络的输出能正确指出电路状态所属类别。在做实际电路诊断时,对被测电路施加与产生样本时相同的激励和工作条件,取得相应特征,将此特征输入到已训练好的BP网络。由BP网络的输出判断电路中是否有故障;如有,则定位故障。
为了从最大程度上隔离和识别故障,采用多频测试的方法。这时,从哪些频率点提取故障特征成为首要问题,测试频率选择的好坏直接影响到对故障的分辨能力和诊断效果及样本选择。
1.3 BP故障特征提取
提取故障特征是模拟电路故障诊断的关键,也是构造样本集的基础。
基于神经网络的模拟电路故障诊断系统,主要包括两个过程:学习(训练)过程,诊断(测试)过程。其中每个过程都包括数据预处理和特征提取2部分。整个故障诊断系统的过程如图2所示。
如何有效提取优质的模拟电路故障特征,是进行电路故障诊断和测试的难点所在。在设计模拟电路故障诊断系统时,能够快速、有效地提取反映电路的故障信息的特征是进行故障诊断的关键所在。