其中:s(k)为有用信号;c(k)为可测噪声,经过非线性变换H(z)后为有色噪声z(k) ,测量信号d(k) =s(k)+ z(k) 为被噪声污染的信号,s(k)与 z(k) 是不相关的。噪声抵消就是从被噪声污染的信号中估计s(k),显然,这只要估计出z(k)即可。而z(k)是c(k)的延迟和变形,它是不可测的,即z(k)=f(c(k),c(k-1,c(k-2),…) ,其中,函数f 是未知的、非线性的,而且其频率范围往往与d(k)的频率范围重叠,所以,频率滤波技术无法实现。现在利用ANFIS 网络可以任意逼近非线性函数的能力,使ANFIS 网络逼近有色噪声z(k),从而估计出信号y(k) 。
用ANFIS 网络逼近有色噪声时,网络的输入为噪声c(k)和c(k-1) ,并且每个变量采用钟形隶属函数,输出样本本应该为有色噪声,但是实际不能直接得到它,这里可以用测量信号d(k)=s(k)+f(c(k),c(k-1),…)来代替。ANFIS 的输出即可作为z(k)的估计值.(),而ANFIS 的训练应使下面的误差最小
其中f.就是由ANFIS 产生的非线性函数的逼近。将上式展开,得
信号s(k)。
3 仿真研究
设有用信号为
利用MATLAB 仿真,ANFIS 的信息如下:
Number of nodes: 21
Number of linear parameters: 12
Number of nonlinear parameters: 12
Total number of parameters: 24
Number of training data pairs: 601
Number of checking data pairs: 0
Number of fuzzy rules: 4
结果如图3 所示。
图3 仿真结果
4 结论
自适应噪声抵消技术,可在未知外界干扰源特征、传递途径不断变化,以及背景噪声和被测对象相似的情况下,能够有效地消除外界声源的干扰获得高信噪比的对象信号,这一技术可为机械元件的噪声、振动等动态信号在测试环境不太理想的工作现场做测试分析和故障诊断时,提供可靠的方法和依据,具有一定的理论意义和应用价值。
本文作者创新点:对用ANFIS 网络逼近有色噪声进行了误差分析,进而从测量信号中消除有色噪声得到有用信号。