1 MEMS陀螺仪信号处理平台的硬件结构
1.1 信号处理平台的硬件结构及工作原理
MEMS陀螺仪信号的处理平台的硬件系统应该包括以下几个部分:DSP模块,数据采集模块,上位机通信模块和JTAG调试接口模块。
数据采集模块由两部分组成:6路16位模/数转换器ADS8364和同步时序控制器FPGA(A3P250VQ100)。FPGA(A3P250VQ100)一方面是控制各个单元时序,另一方面是为了对A/D采集来的陀螺信号进行预处理。
模/数转换器ADS8364通过FPGA与DSPVC33相连,采集三轴陀螺信号。
DSP主要完成对陀螺信号的降噪运算。陀螺信号经DSP处理后再由SCI接口传送到上位机。
系统设计的原理框图如图1所示。
在图1中三路陀螺模拟信号经过各自的信号调理、抗混迭滤波后进入多通道A/D转换器,在FPGA的控制下选择一路信号进行转换,转换结果送入FPGA片上FIFO缓存,由DSP读取数据并进行数字信号处理。同时FPGA对A/D转换器传过来的信号进行预处理,再送到DSP进行信号降噪处理,保证了MEMS陀螺信号处理系统处理的实时性。然后DSP把处理后的结果送至上位机和经过串口输出,完成数字输出和模拟输出,满足不同的应用要求。
1.2 信号处理平台A/D电路设计
在整个MEME陀螺信号处理平台中,A/D转换器是整个系统数据采集部分关键核心器件,信号处理系统中选用了美国德州仪器(TI)公司的ADS8364作为MEMS陀螺信号处理平台的A/D转换器。ADS8364是TI公司推出的高速、低功耗、6通道16位A/D转换芯片,共有64个引脚。其时钟信号由外部提供,最高频率为5 MHz,对应的采样频率是250 kHz。数字电源供电电压为3~5 V,即可以与3.3 V供电的微控制器接口,也可以与5 V供电的微控制器接口。所以ADS8364非常适合应用在精度要求较高,结构简单的嵌入式信号处理系统中。
ADS8364的时钟信号由外部提供,这里由FPGA提供时钟信号,主要是考虑到FPGA可以灵活地改变时钟频率,进而改变系统的采样频率。A/D转换完成后产生转换结束信号EOC。将ADS8364的BYTE引脚接低电平,使转换结果以16位的方式输出。地址/模式信号(A0,A1,A2)决定ADS8364的数据读取方式,可以选择的方式包括单通道、周期或FIFO模式。将ADD引脚置为高电平,使得读出的数据中包含转换通道信息。考虑到数据采集处理系统的采样频率一般较高,如果用DSP直接控制ADS8364的访问,将占用DSP较多的资源,同时对DSP的实时性要求也较高。因此在本系统设计中,用FPGA实现ADS8364的接口控制电路,并将转换结果存储在FPGA中,用DSP实现FPGA芯片的输出接口。图2为ADS8364与FPGA的接口电路设计图。
1.3 DSP的串行通信接口设计
TMS320VC33 DSP中的串口是一种同步串行接口,串行通信接口(SCI)是采用双线通信的异步串行通信接口,即通常所说的UART口,VC33内部带有串行通信模块,该串口支持16级接收和发送FIFO,可以与PC和其他异步通信外设进行数字通信,在信号处理平台系统中采用RS 232通信方式将数据发给上位机,与TMS320VC33接口的外设选用MAX3232。